
Sherafati et al. eLife 2022;11:e75323. DOI: https://doi.org/10.7554/eLife.75323  1 of 23

Prefrontal cortex supports speech 
perception in listeners with 
cochlear implants
Arefeh Sherafati1, Noel Dwyer2, Aahana Bajracharya2, 
Mahlega Samira Hassanpour3, Adam T Eggebrecht1,4,5,6, Jill B Firszt2, 
Joseph P Culver1,5,6,7, Jonathan E Peelle2*

1Department of Radiology, Washington University in St. Louis, St. Louis, United 
States; 2Department of Otolaryngology, Washington University in St. Louis, St. Louis, 
United States; 3Moran Eye Center, University of Utah, Salt Lake City, United States; 
4Department of Electrical & Systems Engineering, Washington University in St. 
Louis, St. Louis, United States; 5Department of Biomedical Engineering, Washington 
University in St. Louis, St. Louis, United States; 6Division of Biology and Biomedical 
Sciences, Washington University in St. Louis, St. Louis, United States; 7Department of 
Physics, Washington University in St. Louis, St. Louis, United States

Abstract Cochlear implants are neuroprosthetic devices that can restore hearing in people with 
severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical 
limitations on the precision of this stimulation, the acoustic information delivered by a cochlear 
implant does not convey the same level of acoustic detail as that conveyed by normal hearing. 
As a result, speech understanding in listeners with cochlear implants is typically poorer and more 
effortful than in listeners with normal hearing. The brain networks supporting speech understanding 
in listeners with cochlear implants are not well understood, partly due to difficulties obtaining func-
tional neuroimaging data in this population. In the current study, we assessed the brain regions 
supporting spoken word understanding in adult listeners with right unilateral cochlear implants 
(n=20) and matched controls (n=18) using high- density diffuse optical tomography (HD- DOT), a 
quiet and non- invasive imaging modality with spatial resolution comparable to that of functional 
MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed 
greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a 
region engaged in a separate spatial working memory task. These results suggest that listeners with 
cochlear implants require greater cognitive processing during speech understanding than listeners 
with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.

Editor's evaluation
The work establishes use of a specific extra area of prefrontal cortex during word listening by CI 
users and supports a hypothesis based on the multiple demand network that can be tested using 
other techniques that look at the rest of the network. The revision provides further points of clarity 
required and better acknowledges the limitations of the technique.

Introduction
Cochlear implants (CIs) are neuroprosthetic devices that can restore hearing in people with severe to 
profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations 
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on the precision of this stimulation—including, for example, the spatial spread of electrical current 
(Garcia et al., 2021)—the auditory stimulation delivered by a CI does not convey the same level of 
acoustic detail as normal hearing. As a result, speech understanding in listeners with CIs is poorer than 
in listeners with normal hearing (Firszt et al., 2004). Notably, even in quiet, listeners with CIs report 
increased effort during listening (Dwyer and Firszt, 2014). Despite these challenges, many listeners 
with CIs attain significant success in understanding auditory speech. This remarkable success raises 
the question of how listeners with CIs make sense of a degraded acoustic signal.

One area of key importance is understanding the degree to which listeners with CIs rely on non- 
linguistic cognitive mechanisms to compensate for a degraded acoustic signal. In listeners with normal 
hearing, cognitive demands increase when speech is acoustically challenging (Peelle, 2018). For 
example, even when speech is completely intelligible, acoustically degraded speech can reduce later 
memory for what has been heard (Cousins et al., 2013; Koeritzer et al., 2018; Rabbitt, 1968; Ward 
et al., 2016). These findings suggest that to understand acoustically challenging speech, listeners 
need to engage domain- general cognitive resources during perception. In a limited capacity cogni-
tive system (Wingfield, 2016), such recruitment necessarily reduces the resources available for other 
tasks, including memory encoding. Importantly, even speech presented in quiet (i.e., without back-
ground noise) is degraded by the time it reaches the auditory system of a listener with a CI.

Cognitive demands during speech understanding are supported by several brain networks that 
supplement classic frontotemporal language regions. The cingulo- opercular network, for example, 
is engaged during particularly challenging speech (Eckert et  al., 2009; Vaden et  al., 2017) and 
supports successful comprehension during difficult listening (Vaden et  al., 2013). Recruitment of 
prefrontal cortex (PFC) complements that in the cingulo- opercular network and varies parametri-
cally with speech intelligibility (Davis and Johnsrude, 2003). Activity in PFC, particularly dorsolateral 
regions, is associated with cognitive demands in a wide range of tasks (Duncan, 2010), consistent with 
domain- general cognitive control (Braver, 2012). We thus hypothesized that listeners with CIs would 
rely more on PFC during listening than listeners with normal hearing, and in particular regions of PFC 
associated with non- linguistic tasks. However, the functional anatomy of PFC is also complex (Noyce 
et al., 2017), and dissociating nearby language and domain- general processing regions is challenging 
(Fedorenko et al., 2012).

(C)(B)

Left PFC

150 30

1

Time (s)

0

2

3

150 30

Left auditory

Time (s)

∆
H

bO
 (

µ
M

ol
)

-2

-1

0

1

2

3

4

5

6

150 30

Right auditory

Time (s)

∆
H

bO
 (

µ
M

ol
)

-2

-1

0

1

2

3

4

5

6

7

150 30

Right IFG

Time (s)

(A) A right-ear CI user Spatial working memorySpoken word recognition

t

33.53.1

t

9.33.1

1

0

2

3

1

0

2

3

1

0

2

3

Figure 1. Single- subject data from one cochlear implant (CI) user across multiple sessions. (A) A CI user wearing the high- density diffuse optical 
tomography (HD- DOT) cap. (B) Response to the spoken words across six sessions (36 min of data). Hemodynamic response time- traces are plotted 
for peak activation values across six sessions for four brain regions. The seed colors match the plot boundaries with error bars indicating the standard 
error of the mean over n=12 runs of data. Gray shaded region indicates period during which words are presented. (C) Response to the spatial working 
memory task for the same CI user across four sessions (32 min of data).
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A central question concerns the degree to which listeners with CIs rely on cognitive processing 
outside core speech regions, such as dorsolateral PFC. Obtaining precise spatially localized images 
of regional brain activity has been difficult in listeners with CIs, given that functional MRI (fMRI) is not 
possible (or subject to artifact) due to the CI hardware. Thus, optical brain imaging (Peelle, 2017) has 
become a method of choice for studying functional activity in CI listeners (Anderson et al., 2017; 
Lawler et al., 2015; Lawrence et al., 2018; Olds et al., 2016; Zhou et al., 2018). In the current study, 
we use high- density diffuse optical tomography (HD- DOT) (Eggebrecht et  al., 2014; Zeff et  al., 
2007), previously validated in speech studies in listeners with normal hearing (Hassanpour et  al., 
2015; Hassanpour et al., 2017; Schroeder et al., 2020). HD- DOT provides high spatial resolution and 
homogenous sensitivity over a field of view that captures known speech- related brain regions (White 
and Culver, 2010). We examine the brain regions supporting single word processing in listeners with 
a right unilateral CI relative to that in a group of matched, normal- hearing controls. We hypothesized 
that listeners with CIs would exhibit greater recruitment of PFC compared to normal- hearing controls.

Results
Multi-session single-subject results
Due to the variability across CI users and difficulties in defining single- subject regions of interest 
(ROIs), we performed a small multi- session study from one CI subject for six sessions (Figure 1). We 
collected two runs of spoken word perception per session (for six sessions) and one run of spatial 
working memory task per session (for four sessions). This multi- session analysis enabled localizing the 
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Figure 2. Spoken word recognition group maps. Response to the spoken words in (A) 18 controls and (B) 20 right ear cochlear implant (CI) users. (C) 
Differential activation in response to the spoken words task in CIs>controls highlights the group differences. The first column shows unthresholded β 
maps and the second column shows t- statistic maps thresholded at voxelwise p<0.05 (uncorrected) for each group.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Group results for different hemoglobin contrasts.
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left and right PFC based on the non- verbal spatial working memory task for this subject (Figure 1C). 
It also revealed the engagement of regions beyond the auditory cortex, including PFC, during the 
word perception task (Figure 1B). Time- traces of oxyhemoglobin concentration change show a clear 
event- related response for four selected regions in the word perception results.

Mapping the brain response to spoken words
We first investigated the degree of auditory activation in both control and CI groups by assessing the 
activity in a block design single word presentation task. We found strong bilateral superior temporal 
gyrus (STG) activations in controls similar to our previous studies using the same paradigm (Egge-
brecht et al., 2014; Sherafati et al., 2020), as well as a strong left STG and a reduced right STG 
activation for the CI users (Figure 2A–B). In addition, we observed strong left- lateralized activations in 
regions beyond the auditory cortex, including parts of the PFC, in the CI group (Figure 2B).

Figure 2—figure supplement 1 provides the β maps of oxyhemoglobin (HbO), deoxyhemoglobin 
(HbR), and total hemoglobin (HbT) for controls (panel A), CI users (panel B), CIs>controls (panel C), 
and controls>CIs (panel D).

For statistical analysis, we focused on our predefined ROIs, as shown in Figure 6. Figure 3A- C 
shows unthresholded t- maps, masked by our ROIs. We averaged β values within each ROI, and 
statistically tested for group differences correcting for multiple comparisons across the three ROIs 
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Figure 3. Region of interest (ROI)- based statistical analysis for spoken word recognition task. Unthresholded t- maps in response to the spoken words 
spatially masked in the three ROIs for (A) 18 controls, (B) 20 right ear cochlear implant (CI) users, and (C) CIs>controls, highlight the group differences 
in certain brain areas. (D) Temporal profile of the hemodynamic response in three selected ROIs (left prefrontal cortex [PFC], left auditory, and right 
auditory cortices). The error bars indicate the standard error of the mean over n=20 for CI users and n=18 for controls. Two- sample t- tests for mean β 
value in each ROI have been calculated between controls and the CI user group, confirming a significant increase in left PFC (p=0.015) and a significant 
decrease in the right auditory cortex (p=0.0017) in CI users (indicated by an asterisk above their corresponding box plots, corrected for multiple 
comparisons). The observed change in the left auditory cortex was not significant (p=0.15).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Coupling coefficients of each source and detector is shown in a flat view for all cochlear implant (CI) users included in the study.

Figure supplement 2. Coupling coefficients of each source and detector is shown in a flat view for all controls included in the study.

Figure supplement 3. Effect of the simulated cochlear implant (CI) transducer in controls in the right auditory region of interest (ROI) analysis.

Source data 1. Noisy source- detector numbers are provided along with the threshold used for identifying them for each cochlear implant (CI) user.

https://doi.org/10.7554/eLife.75323
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(Figure 3D). The temporal profile of the hemodynamic response in three selected ROIs also suggests 
the increased activity in the left PFC in the CI users relative to controls, and a decreased activity in 
both left and right auditory regions. Two sample t- statistics for the mean β values in each ROI support 
a statistically significant difference between the control and CI groups in left PFC, t(27) = 2.3, p=0.015 
(one- tailed) and right auditory cortex, t(23) = 3.54, p=0.0017 (two- tailed) (Figure 3D). The observed 
change in the left auditory cortex was not statistically significant, t(36) = 1.46, p=0.15 (two- tailed). The 
threshold for statistical significance, Bonferroni corrected for multiple comparisons across three ROI 
analyses, was 0.016.

To further investigate whether the significant decrease in the right auditory cortex might be due to 
lower light level values around the CI transducer, we first performed a simulation of the HD- DOT sensi-
tivity profile by blocking the optodes around the CI transducer. We found minimal overlap between 
the CI- related signal loss and the right auditory ROI (Appendix 2). We also performed an additional 
simulation analysis by first calculating the mean value of optical light power for each measurement. 
Then, for each source- detector location, we defined the approximate coupling coefficient as the 
mean over the first nearest neighbor measurements that have that source or detector in common. 
Figure 3—figure supplements 1–2 show the coupling coefficients of each source and detector for all 
CI users and controls in the flat view, corrected by the average sensitivity of the avalanche photodiode 
detectors (APDs) plotted on a log base 10 scale to create linearly distributed color scale. We defined 
noisy optodes in the CI cohort as ones that had a coupling coefficient of 30% of maximum or lower 
based on the values for each participant across their two speech runs. If no optode was identified 
using this threshold, we lowered the threshold by 10% increments until at least one source or detector 
was identified (under the logic that the CI transducer must block some light). Figure 3—source data 1 
shows the source- detector numbers and the threshold used for identifying them for each CI user. For 
controls, no source or detector had a coupling coefficient of less than 30% of the maximum.

After identifying the noisy source- detector numbers for all 20 CI users, we pre- processed the data 
for 18 controls 100 times. For each of these analyses, we blocked the identified sources and detectors 
in a selected CI user for one control, assigned by a random permutation, effectively simulating the 
CI- based dropout in our control participants. Then, we replicated the ROI analysis for the right audi-
tory cortex in Figure 3, far right panel, and found that in all 100 shuffles, the right auditory cortex in 
control subjects still had a significantly larger activation compared to the CI users (Figure 3—figure 
supplement 3).

Behavioral measures
An important consideration in studying CI users is the variability in their speech perception abili-
ties, hearing thresholds, and the relationship with brain activity. Figure 4 shows exploratory analyses 
between the magnitude of the activation in the left PFC ROI for the CI cohort with respect to the 
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Figure 4. Relationship between the magnitude of activation in left prefrontal cortex (PFC) and behavioral scores in cochlear implant (CI) users. Plots 
of the Pearson correlation r between the magnitude of the mean β value in the left PFC region of interest (ROI) are shown with respect to speech 
perception score, left ear hearing threshold unaided, left ear hearing threshold (aided if the subject used a hearing aid), and right ear CI- aided hearing 
threshold. Hearing threshold was defined as four- frequency pure- tone average (4fPTA) at four frequencies, 500, 1000, 2000, and 4000 Hz.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Audiograms for left and right ears.

https://doi.org/10.7554/eLife.75323
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speech perception score, left ear hearing threshold unaided, left ear hearing threshold at test (aided 
if the subject used a hearing aid), and right ear hearing threshold (CI- aided).

Using p<0.05 (uncorrected) as a statistical threshold, left PFC activation positively correlated with 
left ear unaided thresholds (p=0.01, Pearson r=0.55) and negatively correlated with right ear CI- aided 
thresholds (p=0.02, Pearson r=–0.49). Left PFC activation did not correlate with speech perception 
score (p=0.4, Pearson r=0.17) and aided hearing threshold for the left ear (p=0.1, Pearson r=0.36). 
Figure 4—figure supplement 1 shows the hearing thresholds (audiograms) for left and right ears for 
each control and CI participant. These scores were unavailable for one control participant, who was 
thus not included in these analyses.

Discussion
Using high- density optical brain imaging, we examined the brain networks supporting spoken word 
recognition in listeners with CIs relative to a matched group of controls with bilateral normal hearing. 
We found that relative to controls, when listening to words in quiet, listeners with CIs showed reduced 
activity in the right auditory cortex and—critically—increased activity in left PFC. We review these two 
findings in turn below.

Increased PFC activity in CI users
When listening to spoken words in quiet, listeners with normal hearing typically engage the left and 
right superior temporal cortex, including primary and secondary auditory regions (Binder et al., 2000; 
Price et al., 1992; Rogers et al., 2020; Wiggins et al., 2016). Our current results for controls show 
this same pattern. However, when listeners with CIs performed the same task, we found that they also 
engaged left PFC significantly more than the controls.

Although we only tested a single level of speech difficulty (i.e., speech in quiet), prior studies have 
parametrically varied speech intelligibility and found intelligibility- dependent responses in the PFC. 
Use of several types of signal degradation (Davis and Johnsrude, 2003) revealed a classic ‘invert-
ed- U’ shape response in the PFC as a function of speech intelligibility, with activity increasing until the 
speech became very challenging and then tapering off. A similar pattern was reported in functional 
near- infrared spectroscopy (fNIRS) (Lawrence et al., 2018).

A pervasive challenge for understanding the role of PFC in speech understanding is the close 
anatomical relationship of core language processing regions and domain- general regions of PFC 
(Fedorenko et al., 2012). We attempted to add some degree of functional specificity to our inter-
pretation by including a spatial working memory task presumed to strongly engage domain- general 
regions with minimal reliance on language processing (Duncan, 2010; Woolgar et al., 2015). Ideally, 
we would have used functional ROIs individually created for each subject. However, we were not 
convinced that our data for this task were sufficiently reliable at the single- subject level, as we only 
had one run per subject. Furthermore, we did not have spatial working memory task data for all 
subjects. Thus, our functional localization relies on group- average spatial working memory responses. 
The region we identified—centered in left inferior frontal sulcus—corresponds well to other inves-
tigations of non- language tasks (e.g., Duncan, 2010), and supports our preferred interpretation of 
engagement of domain- general regions of dorsolateral PFC during listening. However, the ROI also 
extends into the dorsal portion of inferior frontal gyrus (IFG), and we cannot rule out the possibility 
that this frontal activity relates to increased language (as opposed to domain- general) processing.

Reduced auditory cortical activity in CI users
We found reduced activity in the right auditory cortex in CI users relative to controls, which we attribute 
to differences in auditory stimulation. We limited our sample to CI listeners with unilateral right- sided 
implants but did not restrict left ear hearing. Most of our subjects with CIs had poor hearing in their 
left ears, which would result in reduced auditory information being passed to the contralateral (right) 
auditory cortex. This was as opposed to controls who had bilateral hearing. Prior fNIRS studies have 
also shown that activity in the superior temporal cortex corresponds with stimulation and comprehen-
sion (Olds et al., 2016; Zhou et al., 2018). We also leave open the possibility that the CI hardware 
in the right hemisphere interfered with the signal strength, although our simulation studies suggest 
this cannot fully explain the group differences (Appendix 2 and Figure 3—figure supplements 1–3).

https://doi.org/10.7554/eLife.75323
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What is potentially more interesting is the hint at a lower level of activity in the left auditory cortex 
of the CI users compared to controls, even though all CI listeners were receiving adequate stimu-
lation of their right auditory nerve with a right CI. There are several possible explanations for this 
finding. First, activity in superior temporal cortex does not reflect only ‘basic’ auditory stimulation, 
but processing related to speech sounds, word meaning, and other levels of linguistic analysis. Thus, 
although subjects with CIs were certainly receiving stimulation and speech intelligibility scores were 
generally good, some variability was still present (mean speech perception score in quiet = 0.88, SD 
= 0.09). The overall level of speech processing was significantly (p=0.00005) lower for CI users than 
controls (mean speech perception score = 0.99, SD = 0.01), resulting in decreased activity (indeed, 
because the depth of HD- DOT includes only about 1 cm of the brain, much of primary auditory cortex 
is not present in our field of view, and the observed group differences were localized in non- primary 
regions of STG and MTG).

Perhaps the most provocative explanation is that a reduction in top- down modulatory processes 
(Davis and Johnsrude, 2007) plays out as reduced activity in the temporal cortex. That is, given that 
effortful listening depends on attention (Wild et al., 2012), it might be that processes related to top- 
down prediction (Cope et al., 2017; Sohoglu et al., 2012; Sohoglu et al., 2014) are muted when 
too much cognitive control is required for perceptual analysis. Reconciling this interpretation with 
predictive coding accounts of speech perception (Blank and Davis, 2016; Sohoglu and Davis, 2020) 
will require additional work. We emphasize that the group differences in left auditory regions were not 
significant, and thus our interpretation is speculative.

Individual differences in PFC activation during spoken word recognition
Because of the variability of outcomes in CI users (Firszt et al., 2004; Holden et al., 2013), one prom-
ising thought is that individual differences in brain activation may help explain variability in speech 
perception ability. Although our study was not powered for individual difference analysis (Yarkoni and 
Braver, 2010), we conducted exploratory correlations to investigate this avenue of inquiry. Interest-
ingly, we saw a trend such that poorer hearing in the left (non- CI) ear was correlated with increased 
activity in PFC. Our subjects with CIs had significant variability in left ear hearing. Because the speech 
task was conducted using loudspeakers, we would expect both ears to contribute to accurate percep-
tion. Thus, poorer hearing in the left ear would create a greater acoustic challenge, with a correspond-
ingly greater drain on cognitive resources. This interpretation will need additional data to be properly 
tested.

Comparison with previous fNIRS studies in CI users
Due to limitations of using fMRI and EEG in studying CI users, fNIRS- based neuroimaging is an attrac-
tive method for studying the neural correlates of speech perception in this population (Hassanpour 
et al., 2015; Lawler et al., 2015; Saliba et al., 2016; Sevy et al., 2010; Zhou et al., 2018). Some 
prior studies have looked at relationships of behavioral performance and brain activity in CI users. For 
example, Olds et al., 2016, studied temporal lobe activity and showed that both normal hearing and 
CI users with good speech perception exhibited greater cortical activations to natural speech than 
to unintelligible speech. In contrast, CI users with poor speech perception had large, indistinguish-
able cortical activations to all stimuli. Zhou et al., 2018, found that regions of temporal and frontal 
cortex had significantly different mean activation levels in response to auditory speech in CI listeners 
compared with normal- hearing listeners, and these activation levels were negatively correlated with 
CI users’ auditory speech understanding.

Our current study differs in that we were able to simultaneously measure responses in temporal 
and frontal lobes with a high- density array. Our finding of increased recruitment of left PFC in CI 
listeners is broadly consistent with the recruitment of PFC in fNIRS studies in normal- hearing partic-
ipants listening to simulated distorted speech (Defenderfer et al., 2021; Lawrence et al., 2018). 
Potential differences in anatomical localization could reflect the difference between the type of the 
distortion created by an actual CI compared to simulated degraded speech listening scenarios in 
the previous studies, or in source localization accuracy across different imaging hardware. To our 
knowledge, our study is the first fNIRS- based study to use a non- verbal spatial working memory task 
for localizing the PFC ROI in the same population, and it may be that increased use of cross- domain 
functional localizers will prove to be a useful approach in future work.

https://doi.org/10.7554/eLife.75323
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Caveats, considerations, and future directions
As with all fNIRS- based functional brain imaging, our ability to image neural activity is limited by the 
placement of sources and detectors, and in depth to approximately 1 cm of the cortex. Our HD- DOT 
cap covers the regions of superficial cortex commonly identified in fMRI studies of speech processing, 
including bilateral superior (STG) and middle temporal gyri (MTG), and pars triangularis of the left IFG 
(Davis and Johnsrude, 2003; Rodd et al., 2005; Rogers et al., 2020; Wild et al., 2012). We also 
have good coverage of occipital cortex and middle frontal gyrus. However, in the present study we do 
not image pars opercularis of the IFG, the cerebellum, or any subcortical structures. Thus, it is certainly 
possible that additional regions not identified here play different roles in understanding speech for CI 
listeners, a possibility that will require fNIRS setups with improved cortical coverage and converging 
evidence from other methods to explore.

We also note that some care should be taken in the degree to which we have identified PFC. As 
we have pointed out, the functional organization of the frontal cortex is complex and differs from 
person to person; in particular, fMRI studies have demonstrated that regions responding to language 
and non- language tasks lie nearby each other (Fedorenko et al., 2012). Although we attempted to 
improve the interpretation of our results by using a functional localizer, we were not able to define 
subject- specific ROIs, which would be preferable. Future work with single- subject localizers and func-
tional ROIs is needed to more clearly resolve this issue.

Cognitive demand during speech understanding frequently comes up in discussions of effortful 
listening (Pichora- Fuller et al., 2016). Although understandable, it is important to keep in mind that 
the construct of listening effort is not clearly defined (Strand et al., 2021) and different measures of 
‘effort’ do not always agree with each other (Strand et al., 2018). Here, we interpret increased activity 
in PFC as reflecting greater cognitive demand. Although we did not include an independent measure 
of cognitive challenge, we note that simulated CI speech (i.e., noise- vocoded speech) is associated 
with delayed word recognition (McMurray et al., 2017) and poorer memory for what has been heard 
(Ward et al., 2016), consistent with increased dependence on shared cognitive processes (Piquado 
et al., 2010). Relating activity in PFC to cognitive demand is also consistent with decreased activity in 
PFC when speech becomes unintelligible (Davis and Johnsrude, 2003).

Finally, we emphasize that in the current study we only measured responses to speech in quiet. 
Everyday communication frequently occurs in the presence of background noise, which can be partic-
ularly challenging for many listeners with CIs (Firszt et al., 2004). Exploring how activity in PFC and 
other regions fluctuates in response to speech at various levels of background noise would be a highly 
interesting future extension of this work. Based on parametric modulations of acoustic challenge in 
listeners with normal hearing, we might expect increasing activity in PFC as speech gets more chal-
lenging (Davis and Johnsrude, 2003), followed by cingulo- opercular activity once intelligibility is 
significantly hampered (Vaden et al., 2013).

Table 1. Demographic information.

Measure Control CI users

Number of subjects (# of females) 18 (11) 20 (11)

Mean age at test in years (std) 57.57 (12.74) 56.80 (14.09)

Mean years of CI use (std) – 8.10 (6.51)

Mean speech perception score (AzBio sentences in quiet) (std) 0.99 (0.01) 0.88 (0.09)

Mean right ear 4fPTA (std) 16.02 (6.74) 21.85 (5.30) with CI on

Mean left ear 4fPTA (std) 16.61 (7.67) 91.25 (26.77) unaided

Mean left ear 4fPTA at test*,† (std) – 73.28 (37.72)

Mean duration of deafness right ear – 12.58 (11.74)

If no response at a given frequency, a value of 120 dB HL was assigned.
*With hearing aid, if the subject used amplification. Eight out of 20 CI (cochlear implant) users used hearing aids.
†4fPTA (four- frequency pure- tone average), average pure tone threshold at four frequencies (500, 1000, 2000, 
4000 Hz).

https://doi.org/10.7554/eLife.75323
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In summary, using high- density optical neuroimaging, we found increased activity in PFC in listeners 
with CIs compared to listeners with normal hearing while listening to words in quiet. Our findings are 
consistent with a greater reliance on domain- general cognitive processing and provide a potential 
framework for the cognitive effort that many CI users need to expend during speech perception.

Materials and methods

Subjects
We recruited 21 adult CI patients aged 26–79 years (17 right- handed, 2 left- handed, 2 not available), 
and 19 age- and sex- matched controls (18 right- handed, 1 left- handed) (demographic information in 
Table 1). We excluded one CI user due to poor signal quality (evaluated as mean band limited signal- 
to- noise ratio (SNR) of all source- detectors) and one control due to excessive motion (see Appendix 1 
for details). All CI patients had a unilateral right CI (manufacturer: 11 Cochlear, 6 Advanced Bionics, 3 
Med- El). All subjects were native speakers of English with no self- reported history of neurological or 
psychiatric disorders. All aspects of these studies were approved by the Human Research Protection 
Office (HRPO) of the Washington University School of Medicine. Subjects were recruited from the 
Washington University campus and the surrounding community (IRB 201101896, IRB 201709126). 

(A) HD-DOT setup and experimental paradigms

(C) HD-DOT point spread function and sensitivity profile

Spatial working memorySpoken word recognition
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max
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Figure 5. High- density diffuse optical tomography (HD- DOT) system and the experimental design. (A) Schematic of a subject wearing the HD- DOT cap 
along with an illustration of the task design. (B) Simplified illustration of the HD- DOT system (far left), regional distribution of source- detector light levels 
(middle), and source- detector pair measurements (~1200 pairs) as gray solid lines illustrated in a flat view of the HD- DOT cap (far right). (C) An example 
point spread function (PSF) and the HD- DOT sensitivity profile illustrated on the volume and spatially registered on the cortical view of a standard atlas 
in lateral and posterior views.
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All subjects gave informed consent and were compensated for their participation in accordance with 
institutional and national guidelines.

HD-DOT system
Data were collected using a continuous- wave HD- DOT system comprised of 96 sources (LEDs, at both 
750 and 850 nm) and 92 detectors (coupled to APDs, Hamamatsu C5460- 01) to enable HbO and HbR 
spectroscopy (Figure 5; Eggebrecht et al., 2014). The design of this HD- DOT system provides more 
than 1200 usable source- detector measurements per wavelength at a 10 Hz full- field frame rate. This 
system has been validated for successfully mapping cortical responses to language and naturalistic 
stimuli with comparable sensitivity and specificity to fMRI (Eggebrecht et al., 2014; Fishell et al., 
2019; Hassanpour et al., 2015).

Experimental design
Subjects were seated on a comfortable chair in an acoustically isolated room facing an LCD screen 
located 76 cm from them, at approximately eye level. The auditory stimuli were presented through 
two speakers located approximately 150 cm away at about ±21° from the subjects’ ears at a sound 
level of approximately 65 dBA. Subjects were instructed to fixate on a white crosshair against a gray 
background while listening to the auditory stimuli, holding a keyboard on their lap for the stimuli 
that required their response (Figure  5A, left panel). The HD- DOT cap was fitted to the subject’s 
head to maximize optode- scalp coupling, assessed via real- time coupling coefficient readouts using 
an in- house software. The stimuli were presented using Psychophysics Toolbox 3 (Brainard, 1997) 
(RRID:SCR_002881) in MATLAB 2010b.

The spoken word recognition paradigm consisted of six blocks of spoken words per run. Each 
block contained 15 s of spoken words (one word per second), followed by 15 s of silence. Two runs 
were performed in each study session with a total of 180 words in about 6 min (Figure 5A, middle 
panel). This task was first introduced by Petersen et al., 1988, and subsequently replicated in other 
studies with the same HD- DOT system used in this study (Eggebrecht et al., 2014; Fishell et al., 
2019; Sherafati et al., 2020). All sound files were generated from a list of short simple nouns (one to 
four syllables) pronounced with a female digital- voice audio using AT&T Natural Voices text- to- speech 
generator with the ‘Lauren’ digital voice.

To better understand the left PFC activity we observed in our first few CI users, we adopted a 
spatial working memory task introduced in previous studies (Fedorenko et  al., 2011; Fedorenko 
et al., 2013) in the remaining subjects to aid in functionally localizing domain- general regions of PFC. 
In this spatial working memory task, subjects were asked to remember four locations (easy condition) 
or eight locations (hard condition) in a 3×4 grid, appearing one at a time. Following each trial, subjects 
had to choose the pattern they saw among two choices, one with correct and one with incorrect loca-
tions. This task requires keeping sequences of elements in memory for a brief period and has been 
shown to activate PFC. Each run for the spatial working memory task was about 8 min, with a total of 
48 trials in the run (Figure 5A, right panel).

Data processing
HD- DOT data were pre- processed using the NeuroDOT toolbox (Eggebrecht and Culver, 2019). 
Source- detector pair light level measurements were converted to log- ratio by calculating the temporal 
mean of a given source- detector pair measurement as the baseline for that measurement. Noisy 
measurements were empirically defined as those that had greater than 7.5% temporal standard devia-
tion in the least noisy (lowest mean motion) 60 s of each run (Eggebrecht et al., 2014; Sherafati et al., 
2020). The data were next high pass filtered at 0.02 Hz. The global superficial signal was estimated as 
the average across the first nearest neighbor measurements (13 mm source- detector pair separation) 
and regressed from all measurement channels (Gregg et al., 2010). The optical density time- traces 
were then low pass filtered with a cutoff frequency of 0.5 Hz to the physiological brain signal band 
and temporally downsampled from 10 to 1 Hz. A wavelength- dependent forward model of light prop-
agation was computed using an anatomical atlas including the non- uniform tissue structures: scalp, 
skull, CSF, gray matter, and white matter (Ferradal et al., 2014; Figure 5C). The sensitivity matrix 
was inverted to calculate relative changes in absorption at the two wavelengths via reconstruction 
using Tikhonov regularization and spatially variant regularization (Eggebrecht et al., 2014). Relative 

https://doi.org/10.7554/eLife.75323
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changes in the concentrations of oxygenated, deoxygenated, and total hemoglobin (ΔHbO, HbR, 
ΔHbT) were then obtained from the absorption coefficient changes by the spectral decomposition of 
the extinction coefficients of oxygenated and deoxygenated hemoglobin at the two wavelengths (750 
and 850 nm). After post- processing, we resampled all data to a 3 × 3 × 3 mm3 standard atlas using 
a linear affine transformation for group analysis. In addition to the standard HD- DOT pre- processing 
steps used in the NeuroDOT toolbox, we used a comprehensive data quality assessment pipeline (see 
Appendix 1) to exclude the subjects with low pulse SNR or high motion levels.

After pre- processing, the response for the speech task was estimated using a standard general 
linear model (GLM) framework. The design matrix was constructed using onsets and durations of each 
stimulus presentation convolved with a canonical hemodynamic response function (HRF). This HRF 
was created using a two- gamma function (2 s delay time, 7 s time to peak, and 17 s undershoot) fitted 
to the HD- DOT data described in a previous study (Hassanpour et al., 2015). We included both runs 
for each subject in one design matrix using custom MATLAB scripts (Appendix 1—figure 2).

For modeling the spatial working memory task, we used a design matrix with two columns repre-
senting easy and hard conditions. The duration of each easy or hard trial was modeled as the total 
time of stimulus presentation and evaluation. Events were convolved with the same canonical HRF 
described in the spoken word perception task to model hemodynamic responses (Hassanpour et al., 
2014). We used the easy+hard response maps as a reference for defining the PFC ROI, which was 
more robust than the hard>easy contrast previously used for younger populations.

After estimating the response (β map) for each subject for each task, we performed a second- 
level analysis in SPM12 (Wellcome Trust Centre for Neuroimaging) version 7487 (RRID:SCR_007037). 
Extracted time- traces for each subject were then calculated using a finite impulse response model.

We only present the ΔHbO results in the main figures as we have found that the ΔHbO signal 
exhibits a higher contrast- to- noise ratio compared to ΔHbR or ΔHbT (Eggebrecht et  al., 2014; 
Hassanpour et al., 2014).

Functionally defined ROIs
To perform a more focused comparison between controls and CI users, we defined three ROIs, inde-
pendent from our spoken word recognition dataset, for statistical analysis.

To accurately localize the elevated PFC activation in the CI group, we collected HD- DOT data 
from nine subjects (four controls and five CI users in 13 sessions) using a spatial working memory 
task (Fedorenko et al., 2012). The visual spatial working memory task robustly activates PFC due to 
its working memory demands (and visual cortex because of its visual aspect). We chose this task to 
localize the PFC ROI for performing an ROI- based statistical analysis between controls and CI users. 
Our logic is that in prior work this task shows activity that dissociates from nearby language- related 
activity (Fedorenko et al., 2012), and thus the region of PFC localized by this task is more likely to 
reflect domain- general processing (as opposed to language- specific processing). Our results show 
strong bilateral visual and PFC activations in response to this task (Figure 6A left). We then defined 
the left PFC ROI as the cluster of activation in the left PFC (Figure 6A right). This region was centered 
in inferior frontal sulcus, extending into both dorsal IFG and inferior MFG. The location is broadly 
consistent with domain- general (‘multiple demand’) activation (e.g., meta- analysis in Duncan, 2010).

To define the left and right auditory ROIs, we used fMRI resting state data from a previously 
published paper (Sherafati et  al., 2020) that was masked using the field of view of our HD- DOT 
system. We defined the left and right auditory ROIs by selecting a 5 mm radius seed in the contra-
lateral hemisphere and finding the Pearson correlation between the time- series of the seed region 
with all other voxels in the field of view. Correlation maps in individuals were Fisher z- transformed and 
averaged across subjects (Figure 6B–C, left). Right/left auditory ROIs were defined by masking the 
correlation map to include only the right/left hemisphere (Figure 6B–C right). These ROIs extend well 
beyond primary auditory cortex, which is important to capture responses to words often observed in 
lateral regions of STG and MTG.

Speech perception score
To measure auditory- only speech perception accuracy, we presented each participant with two lists 
of AzBio sentences in quiet (Spahr et al., 2012) (except one participant who only heard one set). 

https://doi.org/10.7554/eLife.75323
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We calculated speech perception accuracy as the proportion of correctly repeated words across all 
sentences.

Hearing threshold
We summarized hearing thresholds using a four- frequency pure- tone average (4fPTA), averaging 
thresholds at 500, 1000, 2000, and 4000 Hz. For unaided testing, a value of 120 dB was assigned if 
there was no response at a given frequency; for aided or CI testing, a value of 75 dB was used. For 
CI users, hearing was tested with the right ear CI alone, left ear alone unaided, and left ear with a 
hearing aid, if worn at the time of testing. Figure 4—figure supplement 1 shows the audiograms for 
both controls and CI users.

Quantification and statistical analysis
Based on prior optical neuroimaging studies with similar speech- related tasks (Defenderfer et al., 
2021; Eggebrecht et al., 2014; Hassanpour et al., 2015; Pollonini et al., 2014; Zhou et al., 2018), 

Left PFC ROISpatial working memory activation(A)

(B)
Right auditory ROILeft auditory FC seed map

Left auditory ROIRight auditory FC seed map
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(C)

Masked

Masked
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Figure 6. Defining functional regions of interest (ROIs). (A) Spatial working memory activation for five CI users and four controls over 13 sessions. The 
prefrontal cortex (PFC) ROI was defined as the cluster of activation in the PFC region, after p<0.05 (uncorrected) voxelwise thresholding. (B) Seed- based 
correlation map for a seed located in the left auditory cortex (left map). Right auditory ROI defined by masking the correlation map to include only the 
right hemisphere (right map). (C) Seed- based correlation map for a seed located in the right auditory cortex (left map). Left auditory ROI defined by 
masking the correlation map to include only the left hemisphere (right map).
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we anticipated 15–20 subjects per group would be sufficient to detect a moderate effect size while 
also within our resource limitations. We therefore aimed to have at least 15 subjects in each group. 
We performed a one- tailed two- sample t- test for our main hypothesis (increased recruitment of PFC 
in CI users), for which we had a strong directional hypothesis (greater activity in listeners with CIs than 
controls), and a two- tailed t- test for the left and right auditory cortex changes for which we did not 
have directional hypotheses. We adjusted for unequal variances for left PFC and right auditory ROIs 
based on the significance of Levene’s test.

Acknowledgements
AS would like to thank Abraham Z Snyder, Andrew K Fishell, Kalyan Tripathy, Karla M Bergonzi, 
Zachary E Markow, Tracy M Burns- Yocum, Mariel M Schroeder, Monalisa Munsi, Emily Miller, Timothy 
Holden, and Sarah McConkey for helpful discussions. We also want to thank our participants for their 
time and interest in our study.

Additional information

Competing interests
Jonathan E Peelle: Reviewing editor, eLife. The other authors declare that no competing interests 
exist.

Funding

Funder Grant reference number Author

National Institutes of 
Health

R21DC015884 Jonathan E Peelle

National Institutes of 
Health

R21DC016086 Jonathan E Peelle
Joseph P Culver

National Institutes of 
Health

K01MH103594 Adam T Eggebrecht

National Institutes of 
Health

R21MH109775 Adam T Eggebrecht

National Institutes of 
Health

R01NS090874 Joseph P Culver

National Institutes of 
Health

R01NS109487 Joseph P Culver

National Institutes of 
Health

R01DC019507 Jonathan E Peelle

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Arefeh Sherafati, Conceptualization, Data curation, Formal analysis, Methodology, Software, Valida-
tion, Visualization, Writing - original draft, Writing – review and editing; Noel Dwyer, Conceptualiza-
tion, Data curation, Formal analysis, Investigation, Methodology, Project administration, Visualization, 
Writing – review and editing; Aahana Bajracharya, Investigation, Methodology, Software, Visualiza-
tion, Writing – review and editing; Mahlega Samira Hassanpour, Conceptualization, Investigation, 
Software, Writing – review and editing; Adam T Eggebrecht, Conceptualization, Investigation, Meth-
odology, Software, Writing – review and editing; Jill B Firszt, Conceptualization, Formal analysis, 
Investigation, Methodology, Resources, Supervision, Writing – review and editing; Joseph P Culver, 
Jonathan E Peelle, Conceptualization, Formal analysis, Funding acquisition, Investigation, Method-
ology, Resources, Supervision, Writing – review and editing

Author ORCIDs
Arefeh Sherafati    http://orcid.org/0000-0003-2543-0851

https://doi.org/10.7554/eLife.75323
http://orcid.org/0000-0003-2543-0851


 Research article      Neuroscience

Sherafati et al. eLife 2022;11:e75323. DOI: https://doi.org/10.7554/eLife.75323  14 of 23

Aahana Bajracharya    http://orcid.org/0000-0002-7361-6020
Jonathan E Peelle    http://orcid.org/0000-0001-9194-854X

Ethics
Human subjects: All subjects were native speakers of English with no self- reported history of neuro-
logical or psychiatric disorders. All aspects of these studies were approved by the Human Research 
Protection Office (HRPO) of the Washington University School of Medicine. Subjects were recruited 
from the Washington University campus and the surrounding community (IRB 201101896, IRB 
201709126). All subjects gave informed consent and were compensated for their participation in 
accordance with institutional and national guidelines.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.75323.sa1
Author response https://doi.org/10.7554/eLife.75323.sa2

Additional files
Supplementary files
•  Transparent reporting form 

Data availability
Stimuli, data, and analysis scripts are available from https://osf.io/nkb5v/.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Sherafati A, 
Bajracharya A, Peelle 
JE

2022 Prefrontal cortex supports 
speech perception in 
listeners with cochlear 
implants

https:// osf. io/ nkb5v/ Open Science Framework, 
https:// osf. io/ nkb5v/

References
Anderson CA, Wiggins IM, Kitterick PT, Hartley DEH. 2017. Adaptive benefit of cross- modal plasticity following 

cochlear implantation in deaf adults. PNAS 114:10256–10261. DOI: https://doi.org/10.1073/pnas.1704785114, 
PMID: 28808014

Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Springer JA, Kaufman JN, Possing ET. 2000. Human temporal 
lobe activation by speech and nonspeech sounds. Cerebral Cortex 10:512–528. DOI: https://doi.org/10.1093/ 
cercor/10.5.512, PMID: 10847601

Blank H, Davis MH. 2016. Prediction Errors but Not Sharpened Signals Simulate Multivoxel fMRI Patterns during 
Speech Perception. PLOS Biology 14:e1002577. DOI: https://doi.org/10.1371/journal.pbio.1002577, PMID: 
27846209

Brainard DH. 1997. The Psychophysics Toolbox. Spatial Vision 10:433–436. .DOI: https://doi.org/10.1163/ 
156856897x00357, PMID: 9176952

Braver TS. 2012. The variable nature of cognitive control: a dual mechanisms framework. Trends in Cognitive 
Sciences 16:106–113. DOI: https://doi.org/10.1016/j.tics.2011.12.010

Cope TE, Sohoglu E, Sedley W, Patterson K, Jones PS, Wiggins J, Dawson C, Grube M, Carlyon RP, Griffiths TD, 
Davis MH, Rowe JB. 2017. Evidence for causal top- down frontal contributions to predictive processes in 
speech perception. Nature Communications 8:2154. DOI: https://doi.org/10.1038/s41467-017-01958-7, PMID: 
29255275

Cousins KAQ, Dar H, Wingfield A, Miller P. 2013. Acoustic masking disrupts time- dependent mechanisms of 
memory encoding in word- list recall. Memory & Cognition 42:622–638. DOI: https://doi.org/10.3758/s13421- 
013-0377-7

Davis MH, Johnsrude IS. 2003. Hierarchical processing in spoken language comprehension. The Journal of 
Neuroscience 23:3423–3431 PMID: 12716950., 

Davis MH, Johnsrude IS. 2007. Hearing speech sounds: top- down influences on the interface between audition 
and speech perception. Hearing Research 229:132–147. DOI: https://doi.org/10.1016/j.heares.2007.01.014, 
PMID: 17317056

Defenderfer J, Forbes S, Wijeakumar S, Hedrick M, Plyler P, Buss A. 2021. Frontotemporal activation differs 
between perception of simulated cochlear implant speech and speech in background noise: An image- based 
fNIRS study. NeuroImage 240:118385. DOI: https://doi.org/10.1016/j.neuroimage.2021.118385

https://doi.org/10.7554/eLife.75323
http://orcid.org/0000-0002-7361-6020
http://orcid.org/0000-0001-9194-854X
https://doi.org/10.7554/eLife.75323.sa1
https://doi.org/10.7554/eLife.75323.sa2
https://osf.io/nkb5v/
https://osf.io/nkb5v/
https://doi.org/10.1073/pnas.1704785114
http://www.ncbi.nlm.nih.gov/pubmed/28808014
https://doi.org/10.1093/cercor/10.5.512
https://doi.org/10.1093/cercor/10.5.512
http://www.ncbi.nlm.nih.gov/pubmed/10847601
https://doi.org/10.1371/journal.pbio.1002577
http://www.ncbi.nlm.nih.gov/pubmed/27846209
https://doi.org/10.1163/156856897x00357
https://doi.org/10.1163/156856897x00357
http://www.ncbi.nlm.nih.gov/pubmed/9176952
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1038/s41467-017-01958-7
http://www.ncbi.nlm.nih.gov/pubmed/29255275
https://doi.org/10.3758/s13421-013-0377-7
https://doi.org/10.3758/s13421-013-0377-7
http://www.ncbi.nlm.nih.gov/pubmed/12716950
https://doi.org/10.1016/j.heares.2007.01.014
http://www.ncbi.nlm.nih.gov/pubmed/17317056
https://doi.org/10.1016/j.neuroimage.2021.118385


 Research article      Neuroscience

Sherafati et al. eLife 2022;11:e75323. DOI: https://doi.org/10.7554/eLife.75323  15 of 23

Duncan J. 2010. The multiple- demand (MD) system of the primate brain: mental programs for intelligent 
behaviour. Trends in Cognitive Sciences 14:172–179. DOI: https://doi.org/10.1016/j.tics.2010.01.004, PMID: 
20171926

Dwyer NY, Firszt JB. 2014. Effects of unilateral input and mode of hearing in the better ear: self- reported 
performance using the speech, spatial and qualities of hearing scale. Ear and Hearing 35:126–136. DOI: 
https://doi.org/10.1097/AUD.0b013e3182a3648b

Eckert MA, Menon V, Walczak A, Ahlstrom J, Denslow S, Horwitz A, Dubno JR. 2009. At the heart of the ventral 
attention system: the right anterior insula. Human Brain Mapping 30:2530–2541. DOI: https://doi.org/10.1002/ 
hbm.20688, PMID: 19072895

Eggebrecht AT, Ferradal SL, Robichaux- Viehoever A, Hassanpour MS, Dehghani H, Snyder AZ, Hershey T, 
Culver JP. 2014. Mapping distributed brain function and networks with diffuse optical tomography. Nature 
Photonics 8:448–454. DOI: https://doi.org/10.1038/nphoton.2014.107, PMID: 25083161

Eggebrecht AT, Culver JP. 2019. WUSTL- ORL/NeuroDOT_Beta. 4423adf. Github. https://github.com/WUSTL- 
ORL/NeuroDOT_Beta

Fedorenko E, Behr MK, Kanwisher N. 2011. Functional specificity for high- level linguistic processing in the 
human brain. PNAS 108:16428–16433. DOI: https://doi.org/10.1073/pnas.1112937108, PMID: 21885736

Fedorenko E, Duncan J, Kanwisher N. 2012. Language- selective and domain- general regions lie side by side 
within Broca’s area. Current Biology 22:2059–2062. DOI: https://doi.org/10.1016/j.cub.2012.09.011, PMID: 
23063434

Fedorenko E, Duncan J, Kanwisher N. 2013. Broad domain generality in focal regions of frontal and parietal 
cortex. PNAS 110:16616–16621. DOI: https://doi.org/10.1073/pnas.1315235110, PMID: 24062451

Ferradal SL, Eggebrecht AT, Hassanpour M, Snyder AZ, Culver JP. 2014. Atlas- based head modeling and spatial 
normalization for high- density diffuse optical tomography: in vivo validation against fMRI. NeuroImage 
85:117–126. DOI: https://doi.org/10.1016/j.neuroimage.2013.03.069, PMID: 23578579

Firszt JB, Holden LK, Skinner MW, Tobey EA, Peterson A, Gaggl W, Runge- Samuelson CL, Wackym PA. 2004. 
Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear 
implant systems. Ear and Hearing 25:375–387. DOI: https://doi.org/10.1097/01.aud.0000134552.22205.ee, 
PMID: 15292777

Fishell AK, Burns- Yocum TM, Bergonzi KM, Eggebrecht AT, Culver JP. 2019. Mapping brain function during 
naturalistic viewing using high- density diffuse optical tomography. Scientific Reports 9:11115. DOI: https://doi. 
org/10.1038/s41598-019-45555-8

Garcia C, Goehring T, Cosentino S, Turner RE, Deeks JM, Brochier T, Rughooputh T, Bance M, Carlyon RP. 2021. 
The Panoramic ECAP Method: Estimating Patient- Specific Patterns of Current Spread and Neural Health in 
Cochlear Implant Users. Journal of the Association for Research in Otolaryngology 22:567–589. DOI: https:// 
doi.org/10.1007/s10162-021-00795-2

Gregg NM, White BR, Zeff BW, Berger AJ, Culver JP. 2010. Brain specificity of diffuse optical imaging: 
improvements from superficial signal regression and tomography. Frontiers in Neuroenergetics 2:14. DOI: 
https://doi.org/10.3389/fnene.2010.00014

Hassanpour MS, White BR, Eggebrecht AT, Ferradal SL, Snyder AZ, Culver JP. 2014. Statistical analysis of high 
density diffuse optical tomography. NeuroImage 85:104–116. DOI: https://doi.org/10.1016/j.neuroimage.2013. 
05.105, PMID: 23732886

Hassanpour MS, Eggebrecht AT, Culver JP, Peelle JE. 2015. Mapping cortical responses to speech using 
high- density diffuse optical tomography. NeuroImage 117:319–326. DOI: https://doi.org/10.1016/j. 
neuroimage.2015.05.058, PMID: 26026816

Hassanpour MS, Eggebrecht AT, Peelle JE, Culver JP. 2017. Mapping effective connectivity within cortical 
networks with diffuse optical tomography. Neurophotonics 4:041402. DOI: https://doi.org/10.1117/1.NPh.4.4. 
041402, PMID: 28744475

Holden LK, Finley CC, Firszt JB, Holden TA, Brenner C, Potts LG, Gotter BD, Vanderhoof SS, Mispagel K, 
Heydebrand G, Skinner MW. 2013. Factors Affecting Open- Set Word Recognition in Adults With Cochlear 
Implants. Ear & Hearing 34:342–360. DOI: https://doi.org/10.1097/AUD.0b013e3182741aa7

Koeritzer MA, Rogers CS, Van Engen KJ, Peelle JE. 2018. The Impact of Age, Background Noise, Semantic 
Ambiguity, and Hearing Loss on Recognition Memory for Spoken Sentences. Journal of Speech, Language, and 
Hearing Research 61:740–751. DOI: https://doi.org/10.1044/2017_JSLHR-H-17-0077, PMID: 29450493

Lawler CA, Wiggins IM, Dewey RS, Hartley DEH. 2015. The use of functional near- infrared spectroscopy for 
measuring cortical reorganisation in cochlear implant users: A possible predictor of variable speech 
outcomes? Cochlear Implants International 16:S30–S32. DOI: https://doi.org/10.1179/1467010014Z. 
000000000230

Lawrence RJ, Wiggins IM, Anderson CA, Davies- Thompson J, Hartley DEH. 2018. Cortical correlates of speech 
intelligibility measured using functional near- infrared spectroscopy (fNIRS. Hearing Research 370:53–64. DOI: 
https://doi.org/10.1016/j.heares.2018.09.005, PMID: 30292959

McMurray B, Farris- Trimble A, Rigler H. 2017. Waiting for lexical access: Cochlear implants or severely degraded 
input lead listeners to process speech less incrementally. Cognition 169:147–164. DOI: https://doi.org/10. 
1016/j.cognition.2017.08.013, PMID: 28917133

Noyce AL, Cestero N, Michalka SW, Shinn- Cunningham BG, Somers DC. 2017. Sensory- Biased and Multiple- 
Demand Processing in Human Lateral Frontal Cortex. The Journal of Neuroscience 37:8755–8766. DOI: https:// 
doi.org/10.1523/JNEUROSCI.0660-17.2017, PMID: 28821668

https://doi.org/10.7554/eLife.75323
https://doi.org/10.1016/j.tics.2010.01.004
http://www.ncbi.nlm.nih.gov/pubmed/20171926
https://doi.org/10.1097/AUD.0b013e3182a3648b
https://doi.org/10.1002/hbm.20688
https://doi.org/10.1002/hbm.20688
http://www.ncbi.nlm.nih.gov/pubmed/19072895
https://doi.org/10.1038/nphoton.2014.107
http://www.ncbi.nlm.nih.gov/pubmed/25083161
https://github.com/WUSTL-ORL/NeuroDOT_Beta
https://github.com/WUSTL-ORL/NeuroDOT_Beta
https://doi.org/10.1073/pnas.1112937108
http://www.ncbi.nlm.nih.gov/pubmed/21885736
https://doi.org/10.1016/j.cub.2012.09.011
http://www.ncbi.nlm.nih.gov/pubmed/23063434
https://doi.org/10.1073/pnas.1315235110
http://www.ncbi.nlm.nih.gov/pubmed/24062451
https://doi.org/10.1016/j.neuroimage.2013.03.069
http://www.ncbi.nlm.nih.gov/pubmed/23578579
https://doi.org/10.1097/01.aud.0000134552.22205.ee
http://www.ncbi.nlm.nih.gov/pubmed/15292777
https://doi.org/10.1038/s41598-019-45555-8
https://doi.org/10.1038/s41598-019-45555-8
https://doi.org/10.1007/s10162-021-00795-2
https://doi.org/10.1007/s10162-021-00795-2
https://doi.org/10.3389/fnene.2010.00014
https://doi.org/10.1016/j.neuroimage.2013.05.105
https://doi.org/10.1016/j.neuroimage.2013.05.105
http://www.ncbi.nlm.nih.gov/pubmed/23732886
https://doi.org/10.1016/j.neuroimage.2015.05.058
https://doi.org/10.1016/j.neuroimage.2015.05.058
http://www.ncbi.nlm.nih.gov/pubmed/26026816
https://doi.org/10.1117/1.NPh.4.4.041402
https://doi.org/10.1117/1.NPh.4.4.041402
http://www.ncbi.nlm.nih.gov/pubmed/28744475
https://doi.org/10.1097/AUD.0b013e3182741aa7
https://doi.org/10.1044/2017_JSLHR-H-17-0077
http://www.ncbi.nlm.nih.gov/pubmed/29450493
https://doi.org/10.1179/1467010014Z.000000000230
https://doi.org/10.1179/1467010014Z.000000000230
https://doi.org/10.1016/j.heares.2018.09.005
http://www.ncbi.nlm.nih.gov/pubmed/30292959
https://doi.org/10.1016/j.cognition.2017.08.013
https://doi.org/10.1016/j.cognition.2017.08.013
http://www.ncbi.nlm.nih.gov/pubmed/28917133
https://doi.org/10.1523/JNEUROSCI.0660-17.2017
https://doi.org/10.1523/JNEUROSCI.0660-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/28821668


 Research article      Neuroscience

Sherafati et al. eLife 2022;11:e75323. DOI: https://doi.org/10.7554/eLife.75323  16 of 23

Olds C, Pollonini L, Abaya H, Larky J, Loy M, Bortfeld H, Beauchamp MS, Oghalai JS. 2016. Cortical Activation 
Patterns Correlate with Speech Understanding After Cochlear Implantation. Ear and Hearing 37:e160–e172. 
DOI: https://doi.org/10.1097/AUD.0000000000000258, PMID: 26709749

Peelle JE. 2017. Optical neuroimaging of spoken language. Language, Cognition and Neuroscience 32:847–854. 
DOI: https://doi.org/10.1080/23273798.2017.1290810, PMID: 30555845

Peelle JE. 2018. Listening Effort: How the Cognitive Consequences of Acoustic Challenge Are Reflected in Brain 
and Behavior. Ear and Hearing 39:204–214. DOI: https://doi.org/10.1097/AUD.0000000000000494, PMID: 
28938250

Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. 1988. Positron emission tomographic studies of the 
cortical anatomy of single- word processing. Nature 331:585–589. DOI: https://doi.org/10.1038/331585a0, 
PMID: 3277066

Pichora- Fuller MK, Kramer SE, Eckert MA, Edwards B, Hornsby BWY, Humes LE, Lemke U, Lunner T, Matthen M, 
Mackersie CL, Naylor G, Phillips NA, Richter M, Rudner M, Sommers MS, Tremblay KL, Wingfield A. 2016. 
Hearing Impairment and Cognitive Energy: The Framework for Understanding Effortful Listening (FUEL. Ear 
and Hearing 37:5S-27S. DOI: https://doi.org/10.1097/AUD.0000000000000312, PMID: 27355771

Piquado T, Cousins KAQ, Wingfield A, Miller P. 2010. Effects of degraded sensory input on memory for speech: 
Behavioral data and a test of biologically constrained computational models. Brain Research 1365:48–65. DOI: 
https://doi.org/10.1016/j.brainres.2010.09.070

Pollonini L, Olds C, Abaya H, Bortfeld H, Beauchamp MS, Oghalai JS. 2014. Auditory cortex activation to natural 
speech and simulated cochlear implant speech measured with functional near- infrared spectroscopy. Hearing 
Research 309:84–93. DOI: https://doi.org/10.1016/j.heares.2013.11.007

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 2012. Spurious but systematic correlations in 
functional connectivity MRI networks arise from subject motion (vol 59, pg 2142, 2012. NeuroImage 63:999. 
DOI: https://doi.org/10.1016/j.neuroimage.2012.01.069

Price C, Wise R, Ramsay S, Friston K, Howard D, Patterson K, Frackowiak R. 1992. Regional response differences 
within the human auditory cortex when listening to words. Neuroscience Letters 146:179–182. DOI: https:// 
doi.org/10.1016/0304-3940(92)90072-f, PMID: 1491785

Rabbitt PMA. 1968. Channel- Capacity Intelligibility and Immediate Memory. Quarterly Journal of Experimental 
Psychology 20:241. DOI: https://doi.org/10.1080/14640746808400158

Rodd JM, Davis MH, Johnsrude IS. 2005. The neural mechanisms of speech comprehension: fMRI studies of 
semantic ambiguity. Cerebral Cortex 15:1261–1269. DOI: https://doi.org/10.1093/cercor/bhi009, PMID: 
15635062

Rogers CS, Jones MS, McConkey S, Spehar B, Van Engen KJ, Sommers MS, Peelle J. 2020. Age- Related 
Differences in Auditory Cortex Activity During Spoken Word Recognition. Neurobiology of Language 
(Cambridge, Mass.) 1:452–473. DOI: https://doi.org/10.1162/nol_a_00021, PMID: 34327333

Saliba J, Bortfeld H, Levitin DJ, Oghalai JS. 2016. Functional near- infrared spectroscopy for neuroimaging in 
cochlear implant recipients. Hearing Research 338:64–75. DOI: https://doi.org/10.1016/j.heares.2016.02.005, 
PMID: 26883143

Schroeder ML, Sherafati A, Ulbrich RL, Fishell AK. 2020. Mapping Cortical Activations Underlying Naturalistic 
Language Generation Without Motion Censoring Using HD- DOT. Optical Tomography and Spectroscopy 
2020:6. DOI: https://doi.org/10.1364/OTS.2020.STu2D.6

Sevy ABG, Bortfeld H, Huppert TJ, Beauchamp MS, Tonini RE, Oghalai JS. 2010. Neuroimaging with near- 
infrared spectroscopy demonstrates speech- evoked activity in the auditory cortex of deaf children following 
cochlear implantation. Hearing Research 270:39–47. DOI: https://doi.org/10.1016/j.heares.2010.09.010, PMID: 
20888894

Sherafati A, Eggebrecht AT, Burns- Yocum TM, Culver JP. 2017. A global metric to detect motion artifacts in 
optical neuroimaging data (Conference Presentation. In Neural Imaging and Sensing. .

Sherafati A, Eggebrecht AT, Bergonzi KM, Burns- Yocum TM, Culver JP. 2018. Improvements in Functional Diffuse 
Optical Tomography Maps by Global Motion Censoring Techniques. Clinical and Translational Biophotonics. . 
DOI: https://doi.org/10.1364/TRANSLATIONAL.2018.JW3A.51

Sherafati A. 2020. Separating Signal from Noise in High- Density Diffuse Optical Tomography. Washington 
University in St. Louis.

Sherafati A, Snyder AZ, Eggebrecht AT, Bergonzi KM, Burns- Yocum TM, Lugar HM, Ferradal SL, 
Robichaux- Viehoever A, Smyser CD, Palanca BJ, Hershey T, Culver JP. 2020. Global motion detection and 
censoring in high- density diffuse optical tomography. Human Brain Mapping 41:4093–4112. DOI: https://doi. 
org/10.1002/hbm.25111, PMID: 32648643

Smyser CD, Snyder AZ, Neil JJ. 2011. Functional connectivity MRI in infants: exploration of the functional 
organization of the developing brain. NeuroImage 56:1437–1452. DOI: https://doi.org/10.1016/j.neuroimage. 
2011.02.073, PMID: 21376813

Sohoglu E, Peelle JE, Carlyon RP, Davis MH. 2012. Predictive top- down integration of prior knowledge during 
speech perception. The Journal of Neuroscience 32:8443–8453. DOI: https://doi.org/10.1523/JNEUROSCI. 
5069-11.2012, PMID: 22723684

Sohoglu E, Peelle JE, Carlyon RP, Davis MH. 2014. Top- down influences of written text on perceived clarity of 
degraded speech. Journal of Experimental Psychology. Human Perception and Performance 40:186–199. DOI: 
https://doi.org/10.1037/a0033206, PMID: 23750966

Sohoglu E, Davis MH. 2020. Rapid computations of spectrotemporal prediction error support perception of 
degraded speech. eLife 9:e58077. DOI: https://doi.org/10.7554/eLife.58077, PMID: 33147138

https://doi.org/10.7554/eLife.75323
https://doi.org/10.1097/AUD.0000000000000258
http://www.ncbi.nlm.nih.gov/pubmed/26709749
https://doi.org/10.1080/23273798.2017.1290810
http://www.ncbi.nlm.nih.gov/pubmed/30555845
https://doi.org/10.1097/AUD.0000000000000494
http://www.ncbi.nlm.nih.gov/pubmed/28938250
https://doi.org/10.1038/331585a0
http://www.ncbi.nlm.nih.gov/pubmed/3277066
https://doi.org/10.1097/AUD.0000000000000312
http://www.ncbi.nlm.nih.gov/pubmed/27355771
https://doi.org/10.1016/j.brainres.2010.09.070
https://doi.org/10.1016/j.heares.2013.11.007
https://doi.org/10.1016/j.neuroimage.2012.01.069
https://doi.org/10.1016/0304-3940(92)90072-f
https://doi.org/10.1016/0304-3940(92)90072-f
http://www.ncbi.nlm.nih.gov/pubmed/1491785
https://doi.org/10.1080/14640746808400158
https://doi.org/10.1093/cercor/bhi009
http://www.ncbi.nlm.nih.gov/pubmed/15635062
https://doi.org/10.1162/nol_a_00021
http://www.ncbi.nlm.nih.gov/pubmed/34327333
https://doi.org/10.1016/j.heares.2016.02.005
http://www.ncbi.nlm.nih.gov/pubmed/26883143
https://doi.org/10.1364/OTS.2020.STu2D.6
https://doi.org/10.1016/j.heares.2010.09.010
http://www.ncbi.nlm.nih.gov/pubmed/20888894
https://doi.org/10.1364/TRANSLATIONAL.2018.JW3A.51
https://doi.org/10.1002/hbm.25111
https://doi.org/10.1002/hbm.25111
http://www.ncbi.nlm.nih.gov/pubmed/32648643
https://doi.org/10.1016/j.neuroimage.2011.02.073
https://doi.org/10.1016/j.neuroimage.2011.02.073
http://www.ncbi.nlm.nih.gov/pubmed/21376813
https://doi.org/10.1523/JNEUROSCI.5069-11.2012
https://doi.org/10.1523/JNEUROSCI.5069-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22723684
https://doi.org/10.1037/a0033206
http://www.ncbi.nlm.nih.gov/pubmed/23750966
https://doi.org/10.7554/eLife.58077
http://www.ncbi.nlm.nih.gov/pubmed/33147138


 Research article      Neuroscience

Sherafati et al. eLife 2022;11:e75323. DOI: https://doi.org/10.7554/eLife.75323  17 of 23

Spahr AJ, Dorman MF, Litvak LM, Van Wie S, Gifford RH, Loizou PC, Loiselle LM, Oakes T, Cook S. 2012. 
Development and Validation of the AzBio Sentence Lists. Ear & Hearing 33:112–117. DOI: https://doi.org/10. 
1097/AUD.0b013e31822c2549

Strand JF, Brown VA, Merchant MB, Brown HE, Smith J. 2018. Measuring Listening Effort: Convergent Validity, 
Sensitivity, and Links With Cognitive and Personality Measures. Journal of Speech, Language, and Hearing 
Research 61:1463–1486. DOI: https://doi.org/10.1044/2018_JSLHR-H-17-0257, PMID: 29800081

Strand JF, Ray L, Dillman- Hasso NH, Villanueva J, Brown VA. 2021. Understanding Speech amid the Jingle and 
Jangle: Recommendations for Improving Measurement Practices in Listening Effort Research. Auditory 
Perception & Cognition 3:169–188. DOI: https://doi.org/10.1080/25742442.2021.1903293

Vaden KI, Kuchinsky SE, Cute SL, Ahlstrom JB, Dubno JR, Eckert MA. 2013. The cingulo- opercular network 
provides word- recognition benefit. The Journal of Neuroscience 33:18979–18986. DOI: https://doi.org/10. 
1523/JNEUROSCI.1417-13.2013, PMID: 24285902

Vaden KI, Teubner- Rhodes S, Ahlstrom JB, Dubno JR, Eckert MA. 2017. Cingulo- opercular activity affects 
incidental memory encoding for speech in noise. NeuroImage 157:381–387. DOI: https://doi.org/10.1016/j. 
neuroimage.2017.06.028, PMID: 28624645

Ward CM, Rogers CS, Van Engen KJ, Peelle JE. 2016. Effects of Age, Acoustic Challenge, and Verbal Working 
Memory on Recall of Narrative Speech. Experimental Aging Research 42:97–111. DOI: https://doi.org/10. 
1080/0361073X.2016.1108785

White BR, Culver JP. 2010. Quantitative evaluation of high- density diffuse optical tomography: in vivo resolution 
and mapping performance. Journal of Biomedical Optics 15:026006. DOI: https://doi.org/10.1117/1.3368999, 
PMID: 20459251

Wiggins IM, Anderson CA, Kitterick PT, Hartley DEH. 2016. Speech- evoked activation in adult temporal cortex 
measured using functional near- infrared spectroscopy (fNIRS): Are the measurements reliable? Hearing 
Research 339:142–154. DOI: https://doi.org/10.1016/j.heares.2016.07.007, PMID: 27451015

Wild CJ, Yusuf A, Wilson DE, Peelle JE, Davis MH, Johnsrude IS. 2012. Effortful listening: the processing of 
degraded speech depends critically on attention. The Journal of Neuroscience 32:14010–14021. DOI: https:// 
doi.org/10.1523/JNEUROSCI.1528-12.2012, PMID: 23035108

Wingfield A. 2016. Evolution of Models of Working Memory and Cognitive Resources. Ear and Hearing 
37:35S-43S. DOI: https://doi.org/10.1097/AUD.0000000000000310, PMID: 27355768

Woolgar A, Jackson J, Duncan J. 2015. How Domain General Is Information Coding in the Brain. A Meta- 
Analysis Of. Department of Cognitive Science. DOI: https://doi.org/10.3389/conf.fnhum.2015.217.00350

Yarkoni T, Braver TS. 2010. Cognitive neuroscience approaches to individual differences in working memory and 
executive control: conceptual and methodological issues. Gruszka A (Ed). In Handbook of Individual 
Differences in Cognition. Springer. p. 87–107. DOI: https://doi.org/10.1007/978-1-4419-1210-7

Zeff BW, White BR, Dehghani H, Schlaggar BL, Culver JP. 2007. Retinotopic mapping of adult human visual 
cortex with high- density diffuse optical tomography. PNAS 104:12169–12174. DOI: https://doi.org/10.1073/ 
pnas.0611266104

Zhou X, Seghouane AK, Shah A, Innes- Brown H, Cross W, Litovsky R, McKay CM. 2018. Cortical Speech 
Processing in Postlingually Deaf Adult Cochlear Implant Users, as Revealed by Functional Near- Infrared 
Spectroscopy. Trends in Hearing 22:2331216518786850. DOI: https://doi.org/10.1177/2331216518786850, 
PMID: 30022732

https://doi.org/10.7554/eLife.75323
https://doi.org/10.1097/AUD.0b013e31822c2549
https://doi.org/10.1097/AUD.0b013e31822c2549
https://doi.org/10.1044/2018_JSLHR-H-17-0257
http://www.ncbi.nlm.nih.gov/pubmed/29800081
https://doi.org/10.1080/25742442.2021.1903293
https://doi.org/10.1523/JNEUROSCI.1417-13.2013
https://doi.org/10.1523/JNEUROSCI.1417-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/24285902
https://doi.org/10.1016/j.neuroimage.2017.06.028
https://doi.org/10.1016/j.neuroimage.2017.06.028
http://www.ncbi.nlm.nih.gov/pubmed/28624645
https://doi.org/10.1080/0361073X.2016.1108785
https://doi.org/10.1080/0361073X.2016.1108785
https://doi.org/10.1117/1.3368999
http://www.ncbi.nlm.nih.gov/pubmed/20459251
https://doi.org/10.1016/j.heares.2016.07.007
http://www.ncbi.nlm.nih.gov/pubmed/27451015
https://doi.org/10.1523/JNEUROSCI.1528-12.2012
https://doi.org/10.1523/JNEUROSCI.1528-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23035108
https://doi.org/10.1097/AUD.0000000000000310
http://www.ncbi.nlm.nih.gov/pubmed/27355768
https://doi.org/10.3389/conf.fnhum.2015.217.00350
https://doi.org/10.1007/978-1-4419-1210-7
https://doi.org/10.1073/pnas.0611266104
https://doi.org/10.1073/pnas.0611266104
https://doi.org/10.1177/2331216518786850
http://www.ncbi.nlm.nih.gov/pubmed/30022732


 Research article      Neuroscience

Sherafati et al. eLife 2022;11:e75323. DOI: https://doi.org/10.7554/eLife.75323  18 of 23

Appendix 1
Data quality assessment steps
Motion artifact detection
Motion artifacts were detected in a time- point by time- point manner on the 10 Hz bandpass filtered 
first nearest neighbor (13  mm) measurements, using a previously described motion detection 
method in HD- DOT, the global variance of the temporal derivatives (GVTD) (Sherafati et al., 2018; 
Sherafati et al., 2017; Sherafati et al., 2020).

GVTD, similar to DVARS (derivative of variance) in fMRI (Power et al., 2012; Smyser et al., 2011), 
is a vector  g  that is defined as the RMS of the temporal derivatives  

(
yji − yji−1

)
  across a set of optical 

density measurements.

 

g=




g1
...

gM


 , gi =

√
1
N
∑N

j=1
(
yji − yji−1

)2

 

,

  

(1)

N is the number of first nearest neighbor measurements, and M is the number of time- points. 
GVTD indexes the global instantaneous change in the time- traces. Higher GVTD values indicate 
high motion levels. We defined the motion criterion (gthresh) (red line in Appendix 1—figure 1 and 
4) based on the GVTD distribution mode ( 

∼
κ ) plus a constant c = 10 times the standard deviation 

computed on the left (low) side of the mode ( σL ).

 gthresh = ∼
κ + cσL,  

Appendix 1—figure 1 shows two example GVTD time- traces for a low- motion and a high- motion 
run. The GVTD threshold was calculated as  gthresh = ∼

κ + 10σL  and is shown as a red line.
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Appendix 1—figure 1. Examples of global variance of the temporal derivative (GVTD) time- traces for a low- 
motion and a high- motion spoken word recognition high- density diffuse optical tomography (HD- DOT) data. The 
red lines indicate the GVTD threshold of  

∼
κ + 10σL  of each run.

Including motion regressors in the design matrix
After determining the time- points that passed the GVTD threshold, we then included a motion 
regressor as a column for each time- point that passed the motion threshold with one for the noisy 
time- point, and zeros for every other point in the design matrix, a method commonly known as one- 
hot encoding. An example design matrix including two runs in a session of spoken word recognition 
task along with their motion regressors are shown in Appendix 1—figure 2.
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Design matrix for the spoken word recognition task
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Appendix 1—figure 2. Including motion regressors in the design matrix. (A) An example design matrix for the 
general linear model (GLM) for the spoken word recognition task, including a constant column (cst), the task times 
for run1, one- hot encoding columns for time- points passing the global variance of the temporal derivative (GVTD) 
threshold for run 1, task times for run2, and one- hot encoding columns for time- points passing the GVTD threshold 
for run 2. (B) The GVTD time- traces and the temporal masks for excluding the time- points passing the GVTD 
threshold are shown in (B) for run 1 and (C) for run 2.

Heartbeat (pulse) SNR across HD-DOT field of view
One indicator of detecting physiological signal in optical neuroimaging is the detection of heartbeat 
frequency (pulse) (Sherafati, 2020). If the data has a very low heartbeat SNR it indicates that 
the lower frequencies emergent from the hemodynamic fluctuations might also have a low SNR. 
Therefore, we excluded the subjects that showed a very low mean pulse SNR across the field of view, 
as it indicates that their brain signal is also less reliable.

The underlying reason behind low pulse SNR is either a poor optode- scalp coupling or high levels 
of motion. If the optode- scalp coupling is good, normally pulse SNR is only low during high- motion 
(identified as high GVTD) epochs of data. However, if the optode- scalp coupling is poor, we will see 
low pulse SNR throughout the run. Note that there are not well- studied definitions and cutoffs for 
the calculation of pulse SNR in fNIRS- based methods. Therefore, since we already regressed time- 
points contaminated with motion using the GVTD index, here we only exclude the subjects that had 
a very low mean pulse SNR across the cap compared to other subjects.

We calculated the pulse SNR using the NeuroDOT function PlotPhysiologyPower.m (https:// 
github.com/WUSTL-ORL/NeuroDOT_Beta; Eggebrecht and Culver, 2019). This function first 
calculates the fast Fourier transform (FFT) of the optical density signal (log mean ratio). Then, it 
calculates the pulse SNR based on the ratio of the band- limited pulse power ~1 Hz (P) and the noise 
floor (N).

The band- limited pulse power (P) is defined as the sum of the squares of the FFT magnitudes of 
a small frequency band around the peak of FFT magnitudes in the 0.5–2 Hz frequency bandwidth. 
The noise floor (N) is then defined as the median of the squares of the FFT magnitudes of the 
FFT indices in the same 0.5–1  Hz frequency band, excluding the indices defined as the peak 
frequency window (used for the heartbeat pulse power). Finally, the pulse SNR was defined as 

 10 × log10
(
P/N

)
 .

For pulse SNR calculation, we only used the second nearest neighbor measurements which 
penetrate through the cortex (30 mm source- detector separation), second wavelength (850 nm), 
and good measurements (ones with <7.5% std). Appendix 1—figure 3 shows an example for 
high SNR values across the field of view (top) and its signature in a subset of the measurements 
for the same run (bottom) (Appendix 1—figure 3A) and an example for low SNR values across 
the field of view (top) and a subset of measurements for that run (bottom) (Appendix 1—figure 
3B).

https://doi.org/10.7554/eLife.75323
https://github.com/WUSTL-ORL/NeuroDOT_Beta
https://github.com/WUSTL-ORL/NeuroDOT_Beta
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Appendix 1—figure 3. Examples of a good and a bad pulse signal- to- noise ratio (SNR) in high- density diffuse 
optical tomography (HD- DOT) data. Example pulse SNR plot and a selection of the measurements from the HD- 
DOT array for (A) a high- quality pulse SNR, and (B) a low- quality pulse SNR. Note the heartbeat frequency (~1 Hz) 
that appears as around 10 peaks in 10 s.

Exclusion of subjects based on low pulse and high motion
We rank ordered all subjects based on their mean band limited SNR across the field of view and their 
mean GVTD values (averaged over two spoken word recognition runs for each subject). We then 
excluded one of the CI users due to a very low band limited SNR (Appendix 1—figure 4A) and one 
control due to a very high motion level (Appendix 1—figure 4B).

https://doi.org/10.7554/eLife.75323
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Appendix 1—figure 4. Exclusion of subjects with very low band limited signal- to- noise ratio (SNR) and very high 
motion levels. Sorting all subjects based on (A) mean band limited SNR value across the high- density diffuse 
optical tomography (HD- DOT field of view, and (B)) mean global variance of the temporal derivative (GVTD) values 
across spoken word recognition runs. The red boxes indicate the subjects excluded based on each quality score.

https://doi.org/10.7554/eLife.75323
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Appendix 2
Simulating the effect of the CI transducer blocking the optodes
We identified the approximate area of the HD- DOT field of view that fell under the transducer 
across people. In most subjects, the transducer only blocked three to five optodes. Due to the high 
density of the optodes in HD- DOT systems (13 mm nearest source- detector distance), even when 
an optode is blocked, the light still penetrates through that region from the neighboring sources. 
Therefore, in most cases, light level plots reveal sensitivity reduction in only two or three optodes. 
Appendix 2—figure 1A shows the location of the CI transducer in one CI user and the optode 
numbers. Appendix 2—figure 1B shows the sensitivity of the HD- DOT cap if all the optodes are 
fully coupled with the scalp. Appendix 2—figure 1C and D demonstrate that the sensitivity drop 
due to the CI transducer is mainly affecting the IFG and MTG when four and six source- detector 
pairs are simulated to be completely blocked. Note that the right auditory ROI (Figure 6B) mainly 
includes the STG.

https://doi.org/10.7554/eLife.75323
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Appendix 2—figure 1. Effects of the cochlear implant (CI) transducer on high- density diffuse optical tomography 
(HD- DOT) sensitivity. (A) A right ear CI user wearing the HD- DOT cap. The yellow contours around the CI 
transducer with respect to the ear fiducials illustrate the source numbers (encircled in red) and detector numbers 
(encircled in blue) around the transducer. (B) The left panel shows the HD- DOT source- detector grid, overlaid 
on the mesh used in the study for image reconstruction. The right panel shows the sensitivity of the HD- DOT 
cap around the cortex including all optodes. (C) The left panel shows four sources (in red) and four detectors (in 
blue) excluded from the sensitivity calculation. The right panel shows the sensitivity of the HD- DOT cap excluding 
those sources and detectors. (D) The left panel shows six sources (in red) and six detectors (in blue) excluded from 
the sensitivity calculation. The right panel shows the sensitivity of the HD- DOT cap excluding those sources and 
detectors. Note that the exclusion of sources and detectors in (C) and (D) only resulted in sensitivity drop off in the 
inferior and middle temporal gyri.

https://doi.org/10.7554/eLife.75323
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