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The number of possible approaches to conducting and analyzing a research study—often 
referred to as researcher degrees of freedom—has been increasingly under scrutiny as a 
challenge to the reproducibility of experimental results. Here we focus on the specific 
instance of time window selection for time series data. As an example, we use data from a 
visual world eye tracking paradigm in which participants heard a word and were 
instructed to click on one of four pictures corresponding to the target (e.g., “Click on the 
hat”). We examined statistical models for a range of start times following the beginning of 
the carrier phrase, and for each start time a range of window lengths, resulting in 8281 
unique time windows. For each time window we ran the same logistic linear mixed effects 
model, including effects of time, age, noise, and word frequency on an orthogonalized 
polynomial basis set. Comparing results across these time ranges shows substantial 
changes in both parameter estimates and p values, even within intuitively “reasonable” 
boundaries. In some cases varying the window selection in the range of 100–200 ms 
caused parameter estimates to change from positive to negative. Rather than rush to 
provide specific recommendations for time window selection (which differs across 
studies), we advocate for transparency regarding time window selection and awareness of 
the effects this choice may have on results. Preregistration and multiverse model 
exploration are two complementary strategies to help mitigate bias introduced by any 
particular time window choice. 

Introduction 

“Often, the less there is to justify a traditional custom, 
the harder it is to get rid of it.” 
- Mark Twain, The Adventures of Tom Sawyer 

In recent years, researcher degrees of freedom—that is, 
the data collection and analysis choices made during the 
course of an experiment—have been increasingly in the 
limelight (Klein & Roodman, 2005; Simmons et al., 2011; 
Wicherts et al., 2016). A fair amount of focus has been on is-
sues such as sample size, rules for stopping data collection, 
controlling for multiple statistical tests, and exclusion cri-
teria for participants. Here we highlight an issue specifically 
related to the dependent measure for time series data: the 
temporal window over which data are analyzed. 

There are many types of data involving large parameter 
spaces over which to search. In psychology and cognitive 
neuroscience, examples of time series signals include EEG, 
single unit recordings from neurons, and data from eye 
tracking and pupillometry. Functional MRI has faced this 
challenge both in the context of extended detection of 

three-dimensional signals (Worsley et al., 1992), and in the 
large number of potential analysis pipelines (Carp, 2012). 
Permutation testing has proven useful in detecting a variety 
of signals extended in both space (Nichols & Holmes, 2001; 
Smith & Nichols, 2009) and time (Maris & Oostenveld, 
2007), but the challenges of large data sets with many pos-
sible analyses remain a contemporary issue. Thus, although 
in the current paper we focus on eye tracking data as an ex-
ample, issues relating to data selection and model testing 
are broadly reflected in many areas of science. 

To investigate the effects of temporal window selection 
on time series analysis in eye tracking, we use data from a 
visual world paradigm experiment, which has a venerable 
history in psycholinguistic research (Allopenna et al., 1998; 
Cooper, 1974; Huettig et al., 2011). In a typical visual world 
paradigm experiment, multiple objects or words are shown 
on the screen (Figure 1a). A participant hears a word and 
moves a mouse to click on the target—but the gaze of the 
listener (rather than the mouse click) is used as an index of 
spoken word recognition. By averaging over trials in a con-
dition, or across participants, a time course of target fixa-
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Figure 1. a) Illustrative display of a typical trial format from a visual world eye tracking study. The participant 
might hear “Click on the hat”, and the speed at which “hat” was looked at was taken as an index of spoken 
word recognition. b) Averaged data for young and older adults, for high and low frequency words, from Van 
Engen et al. (2020). 

tion—presumed to reflect lexical activation (Marslen-Wil-
son & Welsh, 1978; Treisman, 1960)—can be obtained (see 
Figure 1b). 

A challenge for analyzing this type of eye tracking data 
is deciding the time window over which an analysis should 
be conducted. It takes approximately 200 ms to launch an 
eye movement (Hallett, 1986). Should the starting point for 
analysis be 200 ms after the word onset? After word offset? 
After a word’s perceptual center (Morton et al., 1976)? Af-
ter the uniqueness point? Should the analysis continue for 
a set period of time, or until some proportion of the partici-
pants have looked to the target? For some duration after the 
word offset? For a particular shape of average response? De-
cisions made in individual papers are no doubt frequently 
well-reasoned. However, there is a lack of consensus over 
the “appropriate” time window, and similarly the degree to 
which the choice of a specific time window matters is un-
clear. Indeed, were we to ask for a show of hands among re-
searchers indicating their reasoning for window selection, 
we suspect we would get a wide range of perspectives. Such 
variability leads to our main question: How much does the 
specific time window matter? 

To answer this question, we take a data-driven approach 
to exploring the degree to which choices of time window 
can influence final results. We follow the spirit of sensitivity 
analyses (Saltelli et al., 2004) and multiverse analyses 
(Steegen et al., 2016) that look over a set of analyses (rather 
than a single analysis). The logic is that a raw data set does 
not give rise to a single analysis, but many possible analyses 
(and thus many possible results), depending on the choices 
made by researchers. Considering these various decisions 
can be thought of as a collection of many worlds, or a mul-
tiverse of statistical results. In the current paper we reana-
lyze data from Van Engen et al. (2020) using a large number 
of starting times and window durations (see also Sala-i-
Martin, 1997). We use the same statistical model for each 
time window based on logistic linear mixed effects analyses 
(Barr, 2008; Mirman, 2014; Mirman et al., 2008) to see how 
time window selection affects results. Our goal is to pro-
vide a picture of the possible model results that could be ob-
tained by the selection of different analysis windows. 

Target fixation over the full data window we recorded—4 
seconds—is shown in Figure 1b. In our previously-pub-
lished analysis, we chose the time between 1300 ms and 
2300 ms after the onset of the carrier phrase (because the 
carrier phrase was 1000 ms long, this window began 300 
ms into the target word). We chose this window based on a 
combination of examining previous visual world paradigm 
papers and the shape of the data (i.e., avoiding flat sections 
at the beginning and end of the time window, which we 
thought would be poorly fit by our statistical models). How-
ever, the choice of whether to, say, analyze a 1000 ms long 
window or a 1100 ms long window felt rather arbitrary. 
Our anecdotal experience with this less-than-straightfor-
ward selection process motivated the current mission. 

Method 

Data and analysis scripts are available from 
https://osf.io/7nhts/. 

Data 

A full description of the method can be found in Van En-
gen et al. (2020). In brief, we conducted an experiment us-
ing the visual world paradigm to assess spoken word recog-
nition. We used 200 words: 25 low-frequency targets, 25 
high-frequency targets, and 150 middle-frequency distrac-
tors. All words referred to imageable nouns, depicted using 
a color picture on a white background. Each display oc-
curred with the spoken instructions (carrier phrase) “Click 
on the ________”. Recordings were made by an American 
male from the Midwest. A single 1000 ms recording was 
used for the carrier phrase, and recordings of each target 
word were added. Half of the participants heard the stimuli 
in quiet, while the other half heard stimuli in steady 
speech-shaped noise at a signal-to-noise ratio (SNR) of +3 
dB. 

Participants were 41 young adults aged 18–25 years (25 
female, M = 21.2, SD = 1.8) and 39 older adult counterparts 
aged 65–84 years (24 female, M = 71.7, SD = 5.1). We mea-
sured eye movements with a Tobii X120 eye tracker con-
trolled by LabView 6.2 (RRID:SCR_014325) at a sampling 
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rate of 60 Hz. Participants were seated approximately 0.5 
meters from the camera eye. Informed consent was ob-
tained under a protocol approved by the Washington Uni-
versity in Saint Louis Institutional Review Board. 

Statistical model 

We used the same overall analysis framework as a prior 
study (Van Engen et al., 2020): logistic growth curve analy-
sis to model the by-participant target fixation data using 
the lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et 
al., 2017) packages in R version 4.0.3 (RRID:SCR_001905) 
(R Core Team, 2020). We modelled the time course with 
a third-order orthogonal polynomial basis set (linear, qua-
dratic, and cubic effects of time), along with fixed effects for 
age (young vs. older), frequency (high vs. low), and noise 
(quiet vs. noisy), and the interactions among these three 
factors. We also included participant and participant-by-
frequency random effects in the model to capture individual 
differences and differences in the effect of the frequency 
manipulation on each participant. Statistical significance 
was determined using p values based on asymptotic Wald 
tests (the default in the glmer function from the lme4 pack-
age in R). The model specification is as follows: 

m <- glmer(fixation ~ 
         (linear+quadratic+cubic)*(age*noise 
              *frequency) + 
         (linear+quadratic | Subject) + 
         (linear+quadratic+cubic 
              | Subject:frequency), 
       data=df, 
       family=binomial, 
       control=glmerControl(optimizer="bobyqa", 
            optCtrl=list(maxfun=1e5))) 

Note that this model was chosen to match that in Van 
Engen et al. (2020), and thus in the current paper we did not 
explore variations in model specification. 

Window selection analysis 

We examined a range of start times from 700–2200 ms 
(with target word onset occurring at 1000 ms), and for each 
start time a range of window lengths from 300–1800 ms, in 
steps of 16.667 ms (the sampling rate of the eye tracker). We 
purposefully chose these to span values larger than those 
typically used in the visual world paradigm literature in or-
der to give a good sense of the parameter space (and to en-
sure that we captured the range of values typically used). 
This range also serves as a sanity check, in that we antici-
pated that including extreme values would lead to poor (or 
odd) model fits. We ran all combinations of the start times 
and window lengths for a total of 8281 models. 

Results 

Figure 2 shows parameter estimates and p values for the 
three time parameters (orthogonalized linear, quadratic, 
and cubic effects of time); Figure 3 shows these values for 
main effects of age, noise and word frequency; and Figure 4 
shows these values for linear effects of time and age, noise, 
and word frequency. 

One pattern that is apparent in all of these analyses is 
that, although p values below 0.05 (i.e., “significant”, 

Figure 2. Parameter estimates (top) and p values 
(bottom) for 8281 models for linear, quadratic, and 
cubic effects of time. 

Figure 3. Parameter estimates (top) and p values 
(bottom) for 8281 models for main effects of age, 
noise, and word frequency. 

Figure 4. Parameter estimates (top) and p values 
(bottom) for 8281 models for linear effects of age, 
noise, and word frequency. 

though see Cohen, 1994) are found over a wide range of 
time windows, several effects have ranges with high p val-
ues. For any given time window, one might interpret this 
lack of a significant effect differently knowing that shifting 
the time window by 100 ms would change the significance 
(compared to a situation in which varying the time window 
did not). Another point is that for many effects, given a 
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fixed start time, increasing the window length increases 
sensitivity to effects (that is, longer time windows show p 
values that are consistently smaller than short time win-
dows). 

At first glance, it may also seem troubling that the mag-
nitudes and even signs of parameter estimates are also 
changing as a function of time window. For example, the 
quadratic and cubic terms (Figure 2) both transition from 
positive to negative and back again (a red sector, a blue sec-
tor, another red sector). These changes correspond to in-
flection points in the curves: as the start time and/or win-
dow length are varied, the inflection points move around 
within the time window of the modeled data, such that over 
all models (as plotted here) “stripes” occur. Although con-
sidering the variability in parameter estimates is useful for 
illustrative purposes, in the context of GCA, a change in 
the sign or magnitude of a parameter estimate is not nec-
essarily surprising or indicative of a problem. Rather, poly-
nomial terms are simply adjusting to fit the overall shape, 
and inference is typically done by comparing models (deem-
phasizing the importance of a particular component of the 
model fit). It is also important to consider that polynomial 
basis functions will differ based on the number of time 
points of data being modeled (i.e., shorter time windows 
get assigned more extreme values).1 Thus, changes in mag-
nitude of parameter estimates are not directly comparable 
across time windows of different lengths. Nevertheless, 
from a big-picture perspective, it is important to realize 
that different time window selections will influence model 
behavior, and, in some cases, study outcomes. Particularly, 
if authors have specific hypotheses about how fixed effects 
of interest (e.g., age) will interact with parameter estimates 
(e.g., linear), then time window selection will impact the 
magnitude and direction of these interactions. 

As a final illustration, Figure 5 shows nine time windows 
that all share the starting time (1300 ms) of our published 
analysis, and window durations between 800–1200 ms, 
along with parameter estimates and p values (which are re-
peated from the more comprehensive plots in Figure 3 and 
Figure 4). Inspection of changes in p values in Figure 5 
suggests that time window deviations as small as 50 ms, in 
a time range that might be used in an actual analysis, can 
lead to different model results. For example, the interaction 
of age and the linear effect of time is significant for a win-
dow length of 1000 ms, but not for 900 ms; the interaction 
of noise and the linear effect of time was not significant with 
a window length of 1000 ms, but would have been with a 
window length of 1100 ms; and so on. 

Discussion 

For some experimental designs, the choice of what data 
to model is relatively straightforward. For time series analy-
sis, however, the temporal window over which data are 
modeled is a key factor that is not always straightforward to 
choose. To explore the consequences of time window selec-
tion, we have used real data from a visual world paradigm 
eye tracking study to illustrate how changing the subdivi-
sions of selected data can affect parameter estimates and 
statistical inference (here, p values). Our results show that 
changes in time window selection can indeed significantly 
affect the outcomes. 

In the context of GCA-based analysis of our particular 
data set, we note that the significance of many effects in-
creases with longer window lengths. Presumably, the or-
thogonalized polynomial time effects we used are better 
able to fit a longer time window, and these improved model 
fits are associated with lower overall p values. It may be that 
(at least in the context of visual world paradigm data) GCA 
analyses will generally benefit from slightly longer time 
windows, at least when orthogonalized polynomial effects 
of time are used to model the data (Mirman, 2014). 

Of course, not all of the time windows we included are 
reasonable given what we know about the time course of 
spoken word recognition. That is, an informed researcher 
with experience in the field could narrow the potential time 
window of analysis to a number of options substantially 
smaller than 8281. However, perhaps closer to the heart of 
the matter, we note that models can change substantially 
over relatively small territories. For example, even when 
we used the same start time (1300 ms) as in the original 
analysis, changes to parameter estimates and p values oc-
cur—presto!—over durations between 800–1200 ms, which 
are reasonably similar to time windows used in other stud-
ies. Thus, any flexibility in time window selection has the 
potential for significantly affecting model fits and results. 

It is worth emphasizing that in the specific context of 
GCA, we should probably not worry about individual con-
tributions of higher-order polynomials, losing the forest for 
the trees. That is, it is the overall fit of the function that 
is of primary interest (the combination of different polyno-
mial basis functions). Statistical evaluations are frequently 
performed by comparing models (deemphasizing the im-
portance of any particular component of the model fit). We 
have included plots of individual parameter estimates to 
help illustrate how the models fit the data, but these should 
be interpreted in the context of the overall analytic frame-

We thank a reviewer for bringing this to our attention, as demonstrated in this snippet of R code, which shows that a smaller data frame 
has a range of -.39 to 0.39, and a longer one from -.038 to .038 (an order of magnitude of difference): 
    > library(magrittr) 
    > poly(1:17, 3) %>% apply(2, range) 
                 1          2          3 
    [1,] -0.396059 -0.2725865 -0.4497448 
    [2,]  0.396059  0.4543109  0.4497448 
    > poly(1:2112, 3) %>% apply(2, range) 
                   1           2           3 
    [1,] -0.03767108 -0.02432808 -0.05740745 
    [2,]  0.03767108  0.04858712  0.05740745 

1 
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Figure 5. Illustration of how changing temporal window length affects results for a subset of models tested. 
In all examples, the starting time was 1300 ms (matching our published paper). In several cases, varying the window length between 800–1200 ms would result in different pa-
rameter estimates (top), and differing interpretations of statistical significance in a traditional null hypothesis testing framework (bottom), compared to the 1000 ms temporal 
window used in Van Engen et al. (2020). 

work being adopted. 
Given the potential for analysis window selection to af-

fect the outcome of eye tracking analyses, what can we as 
researchers do to manage these effects? 

One clear recommendation is to decide on an analysis 
window before conducting the analysis, ideally document-
ing the chosen window through a public preregistration 
(Nosek et al., 2018). Although second nature to an increas-
ing number of researchers, preregistration is a far cry from 
being universal. The advantage of preregistering a time 
window is it guards against adjusting an analysis to fit a de-
sired outcome. Specifically, it might be tempting to adjust 
an analysis window within a “reasonable” range if a model 
doesn’t appear to be working, but this runs the danger of 
biasing an analysis towards a particular outcome 
(Kriegeskorte et al., 2009). A pre-chosen analysis window 
eliminates this source of bias. (Of course, other analysis 
windows can be tried, but a preregistration would make 
clear what window was chosen ahead of time and what ex-
ploratory windows were implemented later on.) 

How should a time window for analysis be chosen? Past 
studies are helpful, but with different stimuli or different 
participants the specific time window is likely to differ. We 
offer three suggestions for how to deal with this. The first is 
to run a pilot study, independent of the main study, which 
can be used to explore the effect of window selection on 
the results and help researchers determine an appropriate 
analysis window ahead of time. Pilot data has the advantage 
of using (presumably) the same stimuli, design, equipment, 
and statistical approach as the main study. Lessons from 
this initial work can save many tears in the main exper-
iment. Understandably, the extra time and resources in-
volved mean that pilot studies are not always possible—not 
everyone has the big money to run multiple well-powered 

experiments. And, if not properly powered, parameter esti-
mates, model fits, and p values from a pilot study may be 
unreliable. Nevertheless, pilot data may be useful in estab-
lishing whether a time window is reasonable, or to deter-
mine something like the average time at which an effect be-
gins to occur (e.g., Barr, 2008). 

A complementary approach to preregistration involves 
explorations of parameter space and design choices (time 
window space being one of many possible areas), either 
by researchers themselves or in collaboration with others. 
A number of fields have benefitted from a “many teams” 
analysis approach in which multiple research teams analyze 
the same dataset; convergence (or lack thereof) across 
analyses may indicate how reliable results are (Botvinik-
Nezer et al., 2020; Silberzahn et al., 2018). It may also be 
that even a single research team running multiple models 
may provide additional information about the robustness of 
an effect to specific researcher choices (Sala-i-Martin, 1997; 
Steegen et al., 2016). Of course, statistical inference is lim-
ited due to the non-independence of the data and the large 
number of models run. However, there may be a place for 
such explorations to supplement main analyses (particu-
larly if the main analyses were preregistered). To be clear, 
we are in no way advocating running a large number of 
models and reporting only a “favorable” outcome. Rather, 
we simply point to these types of multiverse analyses as one 
possible approach for understanding the effect of analysis 
choices on results. In these cases we advocate for a “show, 
don’t tell” approach: rather than simply describing a range 
of analyses, a visual representation of the results will go 
a long way towards helping readers understand what has 
been done. 

Thirdly, it should also be considered whether using data-
driven methods for selecting a time window of interest 
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might be used, such as using a grand average across condi-
tions to select a time window based on the shape of that av-
erage. These may be appropriate if noise does not system-
atically differ across conditions (Brooks et al., 2016, though 
see also Kriegeskorte et al., 2009). 

Finally, it is worth noting there are other ways of ap-
proaching time series data that may reduce reliance on a 
specific analysis window. Seedorff and colleagues (2018), 
for example, suggest a bootstrapping approach, BDOTS, to 
estimate differences in time series data in a time-by-time 
basis, and would thus have different constraints than our 
function-based modeling approach. General additive mod-
els (van Rij et al., 2019) are able to fit a broader set of shapes 
than the polynomial-based GCA approach we use here, and 
as a result may be less sensitive to the specific shape of the 
data within a time window. Both approaches are probably 
less sensitive to specific time windows chosen and would 
likely work better with larger time windows. For example, 
in the GAM approach, researchers could choose the widest 
possible window and fit a smoothing spline, making infer-
ences about when curves diverge with a difference smooth. 
In the BDOTS approach, bootstrapping can be used to de-
termine when curves differ from each other. In fact, it may 
be possible to implement some aspects of these analyses in 
GCA using a difference estimate between conditions over 
time. Such an approach would reduce or remove the influ-
ence of time window selection on the process. 

Although the best approach may differ across studies, 
being transparent about the time window selec-
tion—through preregistration, multiverse analysis, or sim-
ply discussing the thought process and windows tried—will 
go a long way towards increasing confidence in results from 
any analysis depending on selection of a time window, pro-

viding one little victory in the quest for robust and replica-
ble analysis. 
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