










difference between 16 and 1 channel sentences [t(10) = 3.8, P
< 0.005 (one-sided)], we found increased coherence for mod-
erately intelligible 4 channel speech compared with unintelli-
gible 4 channel rotated speech [t(10) = 2.1, P < 0.05]. We also

conducted an exploratory whole-brain analysis to identify any
additional regions in which coherence was higher for the 4
channel condition than for the 4 channel rotated condition;
however, no regions reached whole-brain significance.

Figure 3. Source-localized cerebro-acoustic coherence results. (A) Source localization showing signi� cant cerebro-acoustic coherence in the unintelligible 1 channel condition
compared to a permutation-derived null baseline derived from random pairings of acoustic envelopes to MEG data across all participants. Effects shown are whole-brain corrected
(P< 0.05). (B) ROI analysis on coherence values extracted from probabilistically de� ned primary auditory cortex regions relative to coherence for random pairings of acoustic and
cerebral trials. Data showed a signi� cant hemisphere × number of channels × normal/random interaction (P< 0.001).

Figure 4. Linguistic in� uences on cerebro-acoustic coherence. (A) Group analysis showing neural sources in which intelligible 16 channel vocoded speech led to signi� cantly
greater coherence with the acoustic envelope than the 1 channel vocoded speech. Effects shown are whole-brain corrected (P< 0.05). Coronal slices shown from an MNI
standard brain at 8 mm intervals. (B) For a 5 mm radius sphere around the middle temporal gyrus peak (� 60,� 16,� 8), the 4 channel vocoded speech also showed signi� cantly
greater coherence than the 4 channel rotated vocoded speech, despite being equated for spectral detail. (C) Analysis of the� rst and second halves of each sentence con� rms
that results were not driven by sentence onset effects: there was no main effect of sentence half nor an interaction with condition.
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We next investigated whether coherence varied within a
condition as a function of intelligibility, as indexed by word
report scores. Coherence values for the 4 channel condition,
which showed the most behavioral variability, were not corre-
lated with single-subject word report scores across partici-
pants or with differences between high- and low-intelligibility
sentences within each participant. Similar comparisons of co-
herence in an ROI centered on the peak of the significant
frontal cluster for 4 channel and 4 channel rotated speech
and between-subject correlations were nonsignificant (all
Ps > 0.53). An exploratory whole-brain analysis also failed to
reveal any regions in which coherence was significantly corre-
lated with word report scores.

Finally, we conducted an additional analysis to verify that
coherence in the middle temporal gyrus was not driven by
differential responses to the acoustic onset of intelligible sen-
tences. We therefore performed the same coherence analysis
as before on the first and second halves of each sentence sep-
arately, as shown in Figure 4C. If acoustic onset responses
were responsible for our coherence results, we would expect
coherence to be higher at the beginning than at the end of
the sentence. We submitted the data from the middle tem-
poral gyrus ROI to a condition × first/second half repeated-
measures ANOVA. There was no effect of half (F10,30 < 1) nor
an interaction between condition and half (F10,30 < 1). Thus,
we conclude that the effects of speech intelligibility on
cerebro-acoustic coherence in the left middle temporal gyrus
are equally present throughout the duration of a sentence.

Discussion

Entraining to rhythmic environmental cues is a fundamental
ability of sensory systems in the brain. This oscillatory track-
ing of ongoing physical signals aids temporal prediction of
future events and facilitates efficient processing of rapid
sensory input by modulating baseline neural excitability
(Arieli et al. 1996; Busch et al. 2009; Romei et al. 2010). In
humans, rhythmic entrainment is also evident in the percep-
tion and social coordination of movement, music, and speech
(Gross et al. 2002; Peelle and Wingfield 2005; Shockley et al.
2007; Cummins 2009; Grahn and Rowe 2009). Here, we show
that cortical oscillations become more closely phase locked to
slow fluctuations in the speech signal when linguistic infor-
mation is available. This is consistent with our hypothesis that
rhythmic entrainment relies on the integration of multiple
sources of knowledge, and not just sensory cues.

There is growing consensus concerning the network of
brain regions that support the comprehension of connected
speech, which minimally include bilateral superior temporal
cortex, more extensive left superior and middle temporal gyri,
and left inferior frontal cortex (Bates et al. 2003; Davis and
Johnsrude 2003, 2007; Scott and Johnsrude 2003; Peelle et al.
2010). Despite agreement on the localization of the brain
regions involved, far less is known about their function. Our
current results demonstrate that a portion of left temporal
cortex, commonly identified in positron emission tomography
(PET) and functional MRI (fMRI) studies of spoken language
(Davis and Johnsrude 2003; Scott et al. 2006; Davis et al.
2007; Friederici et al. 2010; Rodd et al. 2010), shows in-
creased phase locking with the speech signal when speech is
intelligible. These findings suggest that the distributed speech
comprehension network expresses predictions that aid the

processing of incoming acoustic information by enhancing
phase-locked activity. Extraction of the linguistic content gen-
erates expectations for upcoming speech rhythm through pre-
diction of specific lexical items (DeLong et al. 2005) or by
anticipating clause boundaries (Grosjean 1983), as well as
other prosodic elements that have rhythmic correlates appar-
ent in the amplitude envelope (Rosen 1992). Thus, speech in-
telligibility is enhanced by rhythmic knowledge, which in
turn provides the linguistic information necessary for the reci-
procal prediction of upcoming acoustic signals. We propose
that this positive feedback cycle is neurally instantiated by
cerebro-acoustic phase locking.

We note that the effects of intelligibility on phase-locked
responses are seen in relatively low-level auditory regions of
temporal cortex. Although this finding must be interpreted
within the limits of MEG source localization, it is consistent
with electrophysiological studies in nonhuman primates in
which source localization is straightforward (Lakatos et al.
2005, 2007), as well as with interpretations of previous elec-
trophysiological studies in humans (Luo and Poeppel 2007;
Luo et al. 2010). The sensitivity of phase locking in auditory
areas to speech intelligibility suggests that regions that are
anatomically early in the hierarchy of speech processing show
sensitivity to linguistic information. One interpretation of this
finding is that primary auditory regions—either in primary
auditory cortex proper, or in neighboring regions that are syn-
chronously active—are directly sensitive to linguistic content
in intelligible speech. However, there is consensus that
during speech comprehension, these early auditory regions
do not function in isolation, but as part of an anatomical–
functional hierarchy (Davis and Johnsrude 2003; Scott and
Johnsrude 2003; Hickok and Poeppel 2007; Rauschecker and
Scott 2009; Peelle et al. 2010). In the context of such a hier-
archical model of speech comprehension, a more plausible
explanation is that increased phase locking of oscillations in
auditory cortex to intelligible speech reflects the numerous
efferent auditory connections that provide input to auditory
cortex from secondary auditory areas and beyond (Hackett
et al. 1999, 2007; de la Mothe et al. 2006). The latter interpret-
ation is also consistent with proposals of top-down or predic-
tive influences of higher-level content on low-level acoustic
processes that contribute to the comprehension of spoken
language (Davis and Johnsrude 2007; Gagnepain et al. 2012;
Wild et al. 2012).

An important aspect of the current study is that we manipu-
lated intelligibility by varying the number and spectral order-
ing of channels in vocoded speech. Increasing the number of
channels increases the complexity of the spectral information
in speech, but does not change its overall amplitude envel-
ope. Greater spectral detail—which aids intelligibility—is
created by having different amplitude envelopes in different
frequency bands. That is, in the case of 1 channel vocoded
speech, there is a single amplitude envelope applied across
all frequency bands and therefore no conflicting information;
in the case of 16 channel vocoded speech, there are 16 non-
identical amplitude envelopes, each presented in a narrow
spectral band. If coherence is driven solely by acoustic fluctu-
ations, then we might expect that presentation of a mixture of
different amplitude envelopes would reduce cerebro-acoustic
coherence. Conversely, if rhythmic entrainment reflects neural
processes that track intelligible speech signals, we would
expect the reverse, namely increased coherence for speech
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signals with multiple envelopes. The latter result is precisely
what we observed.

In noise-vocoded speech, using more channels results in
greater spectral detail and concomitant increases in intellig-
ibility. One might thus argue that the observed increases in
cerebro-acoustic coherence in the intelligible 16 channel con-
dition were not due to the availability of linguistic infor-
mation, but to the different spectral profiles associated with
these stimuli. However, this confound is not present in the
4 channel and 4 channel rotated conditions, which differ in
intelligibility but are well matched for spectral complexity.
Our comparison of responses with 4 channel and spectrally
rotated 4 channel vocoded sentences thus demonstrates that it
is intelligibility, rather than dynamic spectral change created
by multiple amplitude envelopes (Roberts et al. 2011), that is
critical for enhancing cerebro-acoustic coherence. Our results
show significantly increased cerebro-acoustic coherence for
the more-intelligible, nonrotated 4 channel sentences in the
left temporal cortex. Again, this anatomical locus is in agree-
ment with PET and fMRI studies comparing similar stimuli
(Scott et al. 2000; Obleser et al. 2007; Okada et al. 2010).

We note with interest that both our oscillatory responses
and fMRI responses to intelligible sentences are largely left la-
teralized. In our study, both left and right auditory cortices
show above-chance coherence with the amplitude envelope
of vocoded speech, but it is only in the left hemisphere that
coherence is enhanced for intelligible speech conditions. This
finding stands in contrast to previous observations of right la-
teralized oscillatory responses in similar frequency ranges
shown with electroencephalography and fMRI during rest
(Giraud et al. 2007) or in fMRI responses to nonspeech
sounds (Boemio et al. 2005). Our findings, therefore, chal-
lenge the proposal that neural lateralization for speech pro-
cessing is due solely to asymmetric temporal sampling of
acoustic features (Poeppel 2003). Instead, we support the
view that it is the presence of linguistic content, rather than
specific acoustic features, that is critical in changing the later-
alization of observed neural responses (Rosen et al. 2011;
McGettigan et al. 2012). Some of these apparently contradic-
tory previous findings may be explained by the fact that the
salience and influence of linguistic content are markedly
different during full attention to trial-unique sentences—as is
the case in both the current study and natural speech compre-
hension—than in listening situations in which a limited set of
sentences is repeated often (Luo and Poeppel 2007) or unat-
tended (Abrams et al. 2008).

The lack of a correlation between behavioral word report
and coherence across participants in the 4 channel condition
is slightly puzzling. However, we note that there was only a
range of approximately 20% accuracy across all participants’
word report scores. Our prediction is that if we were to use a
slightly more intelligible manipulation (e.g. 6 or 8 channel vo-
coding) or other conditions that produce a broader range of
behavioral scores, such a correlation would indeed be appar-
ent. Further research along these lines would be valuable in
testing for more direct links between intelligibility and phase
locking (cf. Ahissar et al. 2001).

Other studies have shown time-locked neural responses to
auditory stimuli at multiple levels of the human auditory
system, including auditory brainstem responses (Skoe and
Kraus 2010) and auditory steady-state responses in cortex
(Picton et al. 2003). These findings reflect replicable neural

responses to predictable acoustic stimuli that have high tem-
poral resolution and (for the auditory steady-state response)
are extended in time. To date, there has been no convincing
evidence that cortical phase-locked activity in response to
connected speech reflects anything more than an acoustic-
following response for more complex stimuli. For example,
Howard and Poeppel (2010) conclude that cortical phase
locking to speech is based on acoustic information because
theta-phase responses can discriminate both normal and tem-
porally reversed sentences with equal accuracy, despite the
latter being incomprehensible. Our current results similarly
confirm that neural oscillations can entrain to unintelligible
stimuli and would therefore discriminate different temporal
acoustic profiles, irrespective of linguistic content. However,
the fact that these entrained responses are significantly en-
hanced when linguistic information is available indicates that
it is not solely acoustic factors that drive phase locking during
natural speech comprehension.

Although we contend that phase locking of neural oscil-
lations to sensory information can increase the efficiency of
perception, rhythmic entrainment is clearly not a prerequisite
for successful perceptual processing. Intelligibility depends
on the ability to extract linguistic content from speech: this is
more difficult, but not impossible, when rhythm is perturbed.
For example, in everyday life we may encounter foreign-
accented or dysarthric speakers that produce disrupted
speech rhythms but are nonetheless intelligible with
additional listener effort (Tajima et al. 1997; Liss et al. 2009).
Similarly, short fragments of connected speech presented in
the absence of a rhythmic context (including single monosyl-
labic words) are often significantly less intelligible than con-
nected speech, but can still be correctly perceived (Pickett
and Pollack 1963). Indeed, from a broader perspective, organ-
isms are perfectly capable of processing stimuli that do not
occur as part of a rhythmic pattern. Thus, although adaptive
and often present in natural language processing, rhythmic
structure and cerebro-acoustic coupling are not necessary for
successful speech comprehension.

Previous research has focussed on the integration of multi-
sensory cues in “unisensory” cortex (Schroeder and Foxe
2005). Complementing these studies, here we have shown
that human listeners are able to additionally integrate nonsen-
sory information to enhance the phase locking of oscillations
in auditory cortex to acoustic cues. Our results thus support
the hypothesis that organisms are able to integrate multiple
forms of nonsensory information to aid stimulus prediction.
Although in humans this clearly includes linguistic infor-
mation, it may also include constraints such as probabilistic
relationships between stimuli or contextual associations
which can be tested in other species. This integration would
be facilitated, for example, by the extensive reciprocal connec-
tions among multisensory, prefrontal, and parietal regions
and auditory cortex in nonhuman primates (Hackett et al.
1999, 2007; Romanski et al. 1999; Petrides and Pandya 2006,
2007).

Taken together, our results demonstrate that the phase of
ongoing neural oscillations is impacted not only by sensory
input, but also by the integration of nonsensory—in this case,
linguistic—information. Cerebro-acoustic coherence thus pro-
vides a neural mechanism that allows the brain of a listener to
respond to incoming speech information at the optimal rate
for comprehension, enhancing sensitivity to relevant dynamic
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spectral change (Summerfield 1981; Dilley and Pitt 2010). We
propose that during natural comprehension, acoustic and lin-
guistic information act in a reciprocally supportive manner to
aid in the prediction of ongoing speech stimuli.
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