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ARTICLE INFO ABSTRACT
Article history: Linking structural neuroimaging data from multiple modalities to cognitive performance is an important
Accepted 4 May 2014 challenge for cognitive neuroscience. In this study we examined the relationship between verbal fluency perfor-
Available online 13 May 2014 mance and neuroanatomy in 54 patients with frontotemporal degeneration (FTD) and 15 age-matched controls,
- all of whom had T1- and diffusion-weighted imaging. Our goal was to incorporate measures of both gray matter
KL:;';V gg: (voxel-based cortical thickness) and white matter (fractional anisotropy) into a single statistical model that
Verbal fluency relates to behavioral performance. We first used eigenanatomy to define data-driven regions of interest
Multimodal (DD-ROIs) for both gray matter and white matter. Eigenanatomy is a multivariate dimensionality reduction

FTD approach that identifies spatially smooth, unsigned principal components that explain the maximal amount
of variance across subjects. We then used a statistical model selection procedure to see which of these
DD-ROIs best modeled performance on verbal fluency tasks hypothesized to rely on distinct components
of a large-scale neural network that support language: category fluency requires a semantic-guided search
and is hypothesized to rely primarily on temporal cortices that support lexical-semantic representations;
letter-guided fluency requires a strategic mental search and is hypothesized to require executive resources
to support a more demanding search process, which depends on prefrontal cortex in addition to temporal
network components that support lexical representations. We observed that both types of verbal fluency
performance are best described by a network that includes a combination of gray matter and white matter.
For category fluency, the identified regions included bilateral temporal cortex and a white matter region in-
cluding left inferior longitudinal fasciculus and frontal-occipital fasciculus. For letter fluency, a left tempo-
ral lobe region was also selected, and also regions of frontal cortex. These results are consistent with our
hypothesized neuroanatomical models of language processing and its breakdown in FTD. We conclude
that clustering the data with eigenanatomy before performing linear regression is a promising tool for mul-
timodal data analysis.

© 2014 Elsevier Inc. All rights reserved.

Introduction the brain.! An advantage of this traditional approach is that it makes
few a priori assumptions about the location of the relationship, or the

One of the fundamental challenges of cognitive neuroscience is re- spatial extent of the brain region(s) relating to behavior. However,
lating brain anatomy to cognitive processes. Most neuroimaging studies there are also some challenges. An obvious limitation is that, without
linking brain structure to behavior use mass univariate approaches, re- some sort of prior narrowing of focus, voxelwise methods result in a

lying on a whole-brain regression framework in which the relationship large number of statistical tests that need correction for multiple com-
between a dependent variable (e.g. gray matter density or fractional parisons. A common strategy to address multiple comparisons is to ac-
anisotropy; FA) and a behavioral measure is assessed at every voxel in cumulate voxel data into larger regions of interest (ROIs). However,
ROIs are often difficult and labor-intensive to define for each applica-
tion. For example, the cytoarchitectonic boundaries of Broca's area

Abbreviations: AIC, Aikake Information Criterion; AICc, corrected AIC; bvFTD, involved in language are both structurally (Amunts et al., 1999) and
behavioral-variant FTD; CVMSE, cross-validation mean squared error; FID, frontotemporal functionally (Clos et al., 2013) heterogeneous across individuals. The
degeneration; naPPA, non-fluent/agrammatic variant PPA; PPA, primary progressive apha- anatomical boundaries of a particular label set may not align with

sia; svPPA, semantic variant PPA.
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USA. T For parsimony we refer to “voxelwise” analyses, but this also applies to mass-
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functionally relevant areas or the concentration of pathological change
in a disease under study. These issues motivate the use of data-driven
ROIs (DD-ROIs) that can be defined automatically on different popula-
tions of images, have soft boundaries instead of the hard labeling of
most manual label sets, and can be optimized based on criteria other
than visual anatomical boundaries. Such approaches have been used
for automated diagnosis of Alzheimer's disease (Kléppel et al., 2008)
and the classification of primary progressive aphasia variants (Wilson
et al., 2009). Variability of white matter across individuals has also
been suggested to impact language performance (Berthier et al., 2012;
Floel et al., 2009). Another important issue with ROI studies of white
matter is the lack of available labels: while there are several dense
parcellations of cortical gray matter available to researchers, there are
few white matter atlases and those that are available focus on major
tracts that can be delineated using diffusion tensor imaging.

In this report, we use a multivariate approach that aims to integrate
neuroimaging measures of gray matter and white matter in order to de-
fine a large-scale neural network that accounts for linguistic perfor-
mance. This approach relies on “eigenanatomy” (Avants et al., 2012a;
McMillan et al., 2013b, 2014), which is a recently proposed algorithm
for generating DD-ROIs. These soft ROIs are defined automatically by
maximizing the covariance of voxel-wise measurements normalized
to template space and collected into a matrix representation. There is
no need for prior manual labeling of the subject images and one only
needs to define an anatomical domain of interest in the template, for ex-
ample cortical gray matter for cortical thickness and white matter for
diffusion-tensor statistics. Eigenanatomy also addresses the need to
take into account spatial smoothness in the ROIs. Voxelwise approaches
do this in a post-hoc manner by considering clusters of contiguous re-
sults. More recent multivariate approaches take spatial dependency as
a given, and seek to capitalize on this from the outset. We view this as
a sensible assumption, given the continuous nature of the neural tissue,
and the fact that processes such as neural development, age-related cor-
tical thinning, and gray matter loss due to neurodegenerative disease all
show a significant degree of spatial localization. By capitalizing on these
dependencies, we should be able to better characterize variations in
brain shape and tissue structure. Further, theoretical arguments suggest
that exploiting prior knowledge when solving challenging optimization
problems fundamentally improves results in terms of performance,
stability and interpretability (Wolpert and Macready, 1997).

In combination with eigenanatomy dimensionality reduction, we
apply a model selection procedure to determine which DD-ROIs in
gray matter and white matter form the most efficient regression models
of behavioral measures. This approach combines information from
multiple imaging modalities in a principled manner within a single
regression framework while maintaining the interpretability of classic
regression models. Although in theory researchers certainly appreciate
the joint contribution of gray matter and white matter integrity to
behavioral performance, in practice it has proven difficult to study
these at the same time in the same set of subjects. In particular, it has
been challenging to quantitatively evaluate the relative contribution of
gray matter and white matter to behavior: if a patient has damage to
both, which is the better predictor of performance?

To demonstrate the utility of our multivariate approach, we focus on
the neural basis of language limitations in patients with frontotemporal
degeneration (FTD). The two most common forms of FTD yield either a
language disorder, primary progressive aphasia (PPA) (Gorno-Tempini
etal, 2011), or a disorder of personality, social comportment, and exec-
utive dysfunction, behavioral-variant FTD (bvFTD) (Rascovsky et al.,
2011). Within PPA there is a semantic variant (svPPA) that is character-
ized by difficulty with naming, word meaning, and object knowledge.
This variant has been associated with considerable atrophy in the ante-
rior and ventral temporal lobe, more prominently on the left than the
right, as well as disease in uncinate and inferior longitudinal fasciculi
projections (Mahoney et al., 2013; Whitwell et al,, 2010). There is also
a non-fluent/agrammatic variant (naPPA), involving slowed, effortful

speech with grammatical difficulty and this has been associated with
left-lateralized frontal and anterior-superior temporal cortical regions
and prominent white matter disease in corpus callosum and inferior
frontal-occipital fasciculus (Grossman, 2012; Grossman et al., 2013;
Mahoney et al.,, 2013). bvFTD is not associated with an obvious aphasia,
though executive-social limitations can have consequences on language
processing (McMillan et al., 2013a), and these patients have gray matter
frontal atrophy that is most prominent in ventral and medial frontal
regions and extends into dorsolateral frontal areas, with associated dis-
ease in white matter projections from these areas (Lillo et al., 2012;
Zhang et al., 2013).

Given the distributed localization of disease within the FTD variants
we hypothesize that distinct large-scale neural networks contribute to
patients' language limitations. Specifically, we focus on verbal fluency.
This is a complex task that involves mental search through the lexicon
of words that meet the criteria of a category. This process requires con-
ceptual knowledge of word meanings, lexical retrieval, and executive
resources involving a flexible mental search strategy. Verbal fluency
tasks are common neuropsychological measures that can be adjusted
to stress different cognitive processes and thus place different demands
on a large-scale neuroanatomical network. For example, a category flu-
ency task (“Name as many animals as you can”) emphasizes knowledge
of lexical and conceptual information. By contrast, a letter fluency task
(“Name as many words as you can that begin with the letter F”) requires
lexical information and additionally requires an advanced executive
search strategy to search through all words that begin with a specific
letter. In the context of FTD patients, svPPA patients have more difficulty
with category fluency than letter fluency and this has been associated
with temporal cortex disease (Libon et al., 2009a). However, letter flu-
ency appears to be more associated with frontal cortex disease in FTD
and is compromised in bvFTD and nvPPA (Libon et al., 2009a). Assess-
ments of gray matter regions contributing to verbal fluency tasks have
been performed using a priori regions of interest (Amunts et al., 2004)
or regression analyses using voxel-based morphometry (Libon et al.,
2009b). We are unaware of investigations evaluating the relative contri-
butions of gray matter and white matter disease to verbal fluency defi-
cits in FTD.

Together, we hypothesize that our novel multivariate approach and
model selection procedure will reveal a large-scale neural network that
supports verbal fluency, including fronto-temporal gray matter regions
as well as white matter projections between these brain regions, and
that the cortical-white matter network implicated in performance will
be tailored to the specific task. We test this in a multimodal imaging
study of FTD. These observations would provide proof-of-concept
evidence for utilizing this approach to better understand the relative
contributions of gray matter and white matter in the context of cog-
nitive neuroscience, and would improve our understanding of brain-
behavior relationships in neurodegenerative conditions like FTD.

Materials and methods
Participants

We recruited 54 patients from the Penn Frontotemporal Degenera-
tion Center and Hospital of the University of Pennsylvania Cognitive
Neurology Clinic who were native-English speakers and clinically-
diagnosed with FTD by a board-certified neurologist using published
criteria of either PPA (Gorno-Tempini et al., 2011) or bvFTD (Rascovsky
et al., 2011). Other causes of dementia were excluded by clinical exam,
blood and neuroimaging tests. Exclusion criteria included other neuro-
logic, psychiatric or medical conditions that can result in cognitive
change. Some patients may have been on a small, stable dose of a
non-sedating neuroleptic or anti-depressant medication. We also re-
cruited 15 healthy older adults who were demographically comparable
in age and education relative to the patient cohort. All subjects had T1-
and diffusion-weighted structural MRI scans. Thirty-eight subjects
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performed cognitive testing on the same day as image acquisition, a
further 20 were tested within 90 days of imaging, and the remaining
11 subjects had testing within 6 months of MRI. All participants and, if
necessary, their caregivers, participated in an informed consent process
approved by the University of Pennsylvania Institutional Review Board.
The demographics and dementia diagnoses of the subjects are sum-
marized in Table 1. The subgroups are demographically matched but are
diverse in terms of cognitive performance on the verbal fluency tasks.
The control subgroup has a negative history of neurological or psychiat-
ric diagnoses, and has the highest average fluency scores. The PPA sub-
groups (split in Table 1 into a non-fluent/agrammatic aphasic naPPA
and semantic-variant svPPA) have the lowest average scores. The
bvFTD subgroup has the largest range of scores, overlapping with both
the control and PPA subgroup. Including all of these groups gives us
data points spanning a wide range of the verbal fluency scores, which
is important for building regression models in which they are the
dependent variables. The differences in subgroup verbal fluency are
discussed further in the Results section and illustrated in Figs. 6 and 7.

Cognitive testing

We administered 2 verbal fluency measures to patients, letter fluency
(FAS) and category fluency (animals). For letter fluency, participants are
required to name as many words as possible that begin with the letters
F, A, or S. Participants are given 1 min per letter and we report the mean
words per minute. For category fluency, participants are required to
produce as many animal names as possible in 1 min. We report the
total names produced.

Magnetic resonance imaging

Images were acquired on a 3 T Siemens scanner. A T1 structural acqui-
sition was acquired with TR (repetition time) 1620 ms, TE (echo time)
3's, 192 slices of thickness 1 mm, field of view (FOV) 256 x 256 mm,
reconstructed to 0.9766 x 0.9766 mm? in-plane resolution. The dif-
fusion tensor imaging acquisition was a single-shot, spin-echo,
diffusion-weighted echo-planar imaging sequence with GRAPPA ac-
celeration factor of 3. The diffusion sampling scheme consists of four
images with b = 0 s/mm?, followed by measurements with 30 non-
collinear/non-coplanar directions isotropically distributed in angular
space (b = 1000 s/mm?), TR 6700 ms, TE 85 ms, slice thickness
2.2 mm, and FOV 245 x 245 mm?, reconstructed to 2.19 x 2.19 mm?
in-plane resolution.

Image pre-processing

The MRI images were processed with the PipeDream neuroimag-
ing toolkit http://sourceforge.net/projects/neuropipedream, which

Table 1

Subject demographics, including sample size n for seniors and subjects with each FTD
phenotype, presented as mean 4 standard deviation. The last column is the p-value
from a one-way ANOVA with the null hypothesis that there is no difference in age, years
of education or right-handedness between the four groups. For disease duration and the
cognitive scores, the ANOVA is performed within the 3 FTD groups only. The p-value is
greater than 0.05 for MMSE and category fluency, but not letter fluency. A post-hoc test
(Tukey Honest Significant Difference) on letter fluency suggests a significant difference
between bvFTD and naPPA (p < 0.02) but not between other FTD groups (p < 0.35).

Seniors  bvFTD naPPA  svPPA Total ANOVA (p)

n 15 33 9 12 69 NA

Sex (F, M) 9,6 12,21 3,6 8,4 32,37 0.17
Age (yr) 62+6 62+7 68+11 63+8 63+£8 016
Education (yr) 16+£3 16+£3 14+£3 16+3 16+3 050
Disease duration NA 543 3+£2 3+2 4+3 0.15
MMSE 2941 2446 20+£8 2445 25+£6 026
Category fluency 20+ 6 11+£5 845 8+5 12+7 007
Letter fluency 49+ 11 26 +£15 12+£9 204+ 10 284+ 17 0.01

Q: = 32 Eigenanatomy Qr= 32 Eigenanatomy
DD-ROls in gray matter DD-ROlIs in white matter

Multiply by subject cortical thickness
and FA images

X = 64x69 projections, containing
~ | weighted average thickness or FA over
each DD-ROI for each subject

Cognition
vector
(category or
letter fluency)

Run sparse regression in sccan 10 times with sparsity set to
allow i=1, 2, ...,10 of the 64 possible predictors to be nonzero

Y

Model M1 with
10 predictors

Model M1 with
1 predictor

Record AlCc and adjusted R"2 on each model. Run Monte-
Carlo Cross Validation (MC-CV) with 5000 iterations

Y N\

MC-CV(Mhio)
Select model i with lowest cross-validation mean-squared
error (CVMSE)

MC-CV(Mi)

Fig. 1. Outline of the model selection algorithm. The eigenanatomy projections are com-
bined into a single matrix, yielding 64 potential predictors of cognition in the sparse re-
gression. We produce models with different numbers of predictors by varying the
sparseness parameter; these are then tested independently via cross-validation. The
same procedure is used to test models from each modality separately, in that case we
have 32 potential predictors for the sparse regression step.

implements multi-modal spatial normalization pipelines powered
by ANTs (Avants et al., 2014). To compute cortical thickness, the T1
brain image is first segmented into three tissues using the Atropos
tool in ANTs (Avants et al.,, 2011). The gray matter and white matter
probability maps are then input to the Diffeomorphic Registration-
Based Cortical Thickness (DiReCT) algorithm (Das et al., 2009). The
diffusion images are skull-stripped and diffusion tensors are calculated
using a weighted linear least squares algorithm (Salvador et al., 2005)
implemented in Camino (Cook et al., 2006). Both the diffusion and the
T1 images are normalized to a common template space using ANTs. A
regularized intra-subject registration corrects for the distortion be-
tween the diffusion image and the T1 image, this is then combined
with the warp between the T1 image and the T1 template. After
warping, the anatomical alignment of diffusion tensors is restored by
applying the Preservation of Principal Directions algorithm (Alexander
etal, 2001).

Gray matter and white matter parcellation using eigenanatomy

Given the set of spatially aligned images, we used eigenanatomy to
parcellate the data into coherent regions based upon the variation in
the subject population (Avants et al., 2012a). Like Principal Component
Analysis (PCA), eigenanatomy finds a low-dimensional representation
of the very high-dimensional data matrix containing all voxel data for
all subjects, specifically by computing a sparse singular value decompo-
sition of the input data matrix (either cortical thickness or FA). Further
details of the algorithm are given in Avants et al. (2012b). We use the
eigenvectors as DD-ROIs to compute weighted-average gray matter
and white matter values for use in regression modeling of verbal fluen-
cy. Eigenanatomy has additional constraints compared to traditional
PCA, which are relevant to neuroimaging data. The decomposition is
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Fig. 2. Surface rendering of the 32 eigenanatomy regions for gray matter (top row) and white matter (bottom row).

sparse, meaning that the principal components are constrained to have
nonzero weights in a small fraction of the brain. The eigenvectors are
unsigned, meaning they can be straightforwardly used to compute line-
ar weighted averages in a similar manner to standard ROIs based on
anatomical labeling. Unsigned eigenvectors avoid the difficulties of
interpreting statistics computed on components containing a combina-
tion of positive and negative weights (Todd et al., 2013). The decompo-
sition is spatially clustered, meaning that although we do not force the
components to be a single contiguous region, we prefer components
that retain spatial smoothness and specificity, compared to traditional
PCA eigenvectors, which can be distributed widely throughout the
brain.

We produced gray matter and white matter eigenanatomy separate-
ly. For gray matter, cortical thickness images were aligned to the
template space and averaged. A mask was defined by thresholding
in voxels where the average thickness is greater than 0.1 mm, then
multiplying this image by a pre-defined binary cortical mask in the
template space. The binary cortical mask was defined by warping
the Non-rigid Image Registration Evaluation Project (NIREP) cortical
labels (Christensen et al., 2006) to the template space. A Gaussian
smoothing was applied to the normalized subject images with kernel
standard deviation 1 mm. The data were then transcribed into an n x p¢
matrix where p; = 504471 is the number of voxels in the thickness
mask and there are n = 69 subjects. The procedure for white matter
is similar, the average FA image was masked at a value of 0.25, including
pr= 392248 voxels, and subject images were smoothed and converted
to an n x pg matrix format in the same way. We defined the mask to
include cerebral tissue only, excluding cerebellum and brainstem.

The eigenanatomy algorithm requires the user to define the number
of eigenvectors to be output and their sparsity, which controls the max-
imum spatial extent of each eigenvector. With N eigenvectors, sparsity
of 1/N will produce a set of eigenvectors that approximately cover the
whole brain. We set the number of eigenvectors to 32, which yielded
the same number of cortical DD-ROIs as there are labels in the NIREP
parcellation (Christensen et al., 2006) that we used to generate the

cortical mask. We used the same settings for white matter. Gray matter
and white matter images were parcellated independently using the
same parameters in sccan: 20 iterations, L1 penalty with gradient step
size 0.5, manifold smoothing kernel of 1 voxel, and a minimum cluster
size of 1000 voxels within each eigenvector. In each case, eigenanatomy
is computed by maximizing the variance in the original data that is
captured by the decomposition. Using this process, we reduced our
input data of approximately 1 million voxels to 64 DD-ROIs that capture
most of the variance in the data set. We compute the eigenanatomy on
the complete data set, yielding a decomposition determined only by the
input images, without reference to disease diagnosis or cognitive test
scores.

Surface renderings of the DD-ROIs are shown in Fig. 2. They
are thresholded and rendered as hard labels for easier visualization,
however we use the original soft DD-ROIs for correlation with cognitive
performance.

Model selection for correlation with cognition

Our hypothesis is that both gray matter integrity and white matter
integrity make important contributions to cognitive performance, and
hence we predict a stronger correlation between the MRI measures
and cognition when we include relevant gray matter and white matter
predictors. Mathematically, if we have a matrix of voxel data Py for
thickness or Pg for FA, eigenanatomy outputs principal component ei-
genvectors ¢;, 1 <i < 32. We normalized the eigenvectors, q; = q;/|q;]
to unity, so that the projections are the weighted mean of the thickness
or FA. We arrange the eigenvectors into a matrix Q = [qy, ..., {s,]-
Concatenating the projections X; = P;Q ;and Xy = P;Qj we have a ma-
trix X containing the 64 projections for each of the 69 subjects.

We applied model selection techniques to search for an efficient
model of category-guided and letter-guided fluency scores using a sub-
set of predictors within X. A variety of techniques exist for model selec-
tion in linear regression. It is usually not feasible to examine all possible
models, so a strategy is required for exploring the space of possible
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Fig. 3. Top row: mean squared error for Monte Carlo cross-validation of the sparse regression models, with 18 subjects left out. Points are the average mean squared error over 5000 folds,
vertical bars are 95% confidence intervals on the mean values. Bottom row: AICc scores for the same regression models. The legend follows that of the top row.

Fig. 4. Four eigenanatomy regions used in the sparse regression model of category fluency with minimum cross-validation error. Gray matter predictors are pink, white matter predictors

are blue.
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Fig. 5. Three eigenanatomy regions used in the sparse regression model of letter fluency with minimum cross-validation error. Gray matter predictors are pink, white matter predictors are

blue.

models and ranking them using some metric that can reliably separate
better from worse models. The Aikake Information Criterion (AIC)
(Akaike, 1974) favors models that fit the data better, but penalizes
more complex models, it thus quantifies a trade-off between the com-
peting goals of improving fit to the data and avoiding extraneous pre-
dictors that fit to noise. Related information theoretic techniques
include correction for small sample sizes (AICc) (Sugiura, 1978) or
penalize larger models in a different way (Schwarz, 1978). These tech-
niques provide a relative ordering of models but do not assess the good-
ness of fit to the data in an absolute sense or whether the correlations
generalize to unseen data. The latter can only be truly tested with un-
seen validation data, but cross-validation within the sample can offer
some insight to the ability of a model to predict left out data.

Fig. 1 outlines the process we used to generate and test candidate
models. We generated candidate models using sparse L1 regularized
linear regression implemented in the sccan tool (Kandel et al., 2013).
We ran the regression 10 times on the full data set, varying sparsity to
allow i predictors in X to be non-zero, where 1 <i < 10. We also per-
formed the same regressions using X; and X, so that we could compare
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Fig. 6. Category fluency score vs predicted score from the regression model with 4 predic-
tors, R? = 0.59. The dashed line indicates y = x.

multi-modality models to models with the same number of predictors
drawn from a single modality.

We used cross-validation to test the 10 candidate models from the
sparse regression. Each candidate model M; uses a specific set of i pre-
dictors and is tested separately. We used the bestglm package in R to
perform Monte-Carlo cross-validation. One quarter of the data (18 sub-
jects) are chosen at random and assigned to a test data set, the remain-
ing data (51 subjects) are used as training data. Ordinary least squares
linear regression is performed on the training data using the predictors
in M;. The model fit to the training data is then used to predict the test
data, and the errors are recorded. This procedure was repeated for
5000 random partitions of the data into training and testing sets. We
used the same procedure to do cross-validation on the models that
were restricted to using only gray matter (cortical thickness) or only
white matter (FA) predictors.

Results
Regression models of category-guided and letter-guided verbal fluency

The cross-validation mean squared errors (CVMSE) are shown in the
top row of Fig. 3. Models that use predictors from both modalities have
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Fig. 7. Letter fluency score vs predicted score from the regression model with 3 predictors,
R? = 0.43. The dashed line indicates y = x.
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lower CVMSE than those that are restricted to a single modality. The
models with minimum CVMSE had 4 predictors for category fluency
and 3 predictors for letter fluency. The predictor regions in these models
are shown in Figs. 4 and 5.

The large-scale network identified by cross-validation for category
fluency shown in Fig. 4 implicated regions of left temporal cortex, in-
cluding posterior-lateral middle and inferior temporal gyri. Comparable
regions in right temporal lobe were also implicated. In addition to these
gray matter regions, a white matter region including the left inferior
longitudinal fasciculus and the left frontal-occipital fasciculus was im-
plicated. The model with 5 predictors has very similar cross-validation
performance, the regions are shown in supplementary Fig. S1. This
model uses the same regions as the 4-predictor model plus an additional

region of the left temporal lobe, anterior to the light pink region in Fig. 4.

The network identified for letter fluency is shown in Fig. 5. This
model included a region in left temporal cortex also found in the category
fluency task, covering middle and inferior left temporal cortex. However,
for letter fluency, a different set of frontal regions was also selected, in-
cluding superior frontal gyrus/SMA, and right inferior frontal cortex. The
same white matter region as for the animal fluency task was also selected.

Different candidate models would be selected using selection
criteria other than CVMSE. Cross-validation is our preferred approach
because it estimates over-fitting empirically rather than imposing a
fixed penalty for extra parameters. For comparison, we show the AlCc
scores for the candidate models on the bottom row of Fig. 3. These
plots show similar trends, suggesting that three or four predictors
would yield the best model, and showing that the multi-modality
models outperform single-modality models as they do in the cross-
validation experiments. However, the optimal models according to
AICc differ by one predictor from the cross-validation experiments.
Ranked by AICc, the model with 3 predictors is optimal for category
(animals) fluency and the model with 4 predictors is optimal for letter
(FAS) fluency. An additional ranking of the models by the adjusted R?
metric is shown in supplementary Fig. S2. Adjusted R? selects a larger
model (8 predictors) for category fluency, but agrees with AlCc for letter
fluency. The eigenanatomy regions selected by AICc and R? are shown in
supplementary Figs. S4, S3 and S5.

Figs. 6 and 7 show the predicted scores from the selected sparse re-
gression model plotted against actual scores. Regression statistics relat-
ing to these plots are listed in Table 2. The R? is higher for the category
than for letter fluency, indicating better correlation between the
model predictions and the observed category scores. Part of this differ-
ence is due to a single data point — letter fluency was underestimated in
one subject with bvFTD by more than three times the residual standard
error (RSE). Removal of this point increases the R? from 0.43 to 0.53. Al-
though the models are not sufficient for prediction of individual scores,
the results suggest that we have accomplished our goal of identifying
gray matter and white matter structures that play an important role in
verbal fluency performance.

Performance of selected models across FTD phenotypes

For category-guided naming fluency, Fig. 6 suggests that the anatomic
model underlying svPPA performance overlaps less with the model

Table 2

Test and prediction results, including the range of scores in the data set, the median score
over all subjects and the standard deviation about the mean score. The last two columns
refer to the selected regression models. The actual scores are plotted against those
predicted by regression in Figs. 6 and 7; the category results have higher R? and are thus
more tightly clustered around the diagonal. RSE is the residual standard error for the
models with four and three predictors for category and letter fluency respectively, as
shown in Figs. 4 and 5.

Verbal fluency test ~ Sample range of score  Median ~ Std.dev. R? RSE
Category (animals)  1-29 11 6.7 0.59 4.7
Letter (FAS) 3-70 27 174 043 147

associated with naPPA and bvFTD performance. This would be consistent
with the degraded lexical-semantic representations that are relatively
unique to svPPA. By comparison, for the anatomic model underlying per-
formance on the letter fluency task, there appears to be greater overlap in
the distribution of all three groups. This would be consistent with the
claim that the lexical representation component of letter fluency is less
prominent.

Discussion

In this study we provide proof-of-concept evidence that DD-ROIs
and linear regression can provide insight into the structural brain
networks that support verbal fluency. First, we used eigenanatomy to
reduce the dimensionality in an unsupervised manner from almost a
million voxels to 64 DD-ROIs chosen to capture the variance of the
data set in both cortical thickness and white matter FA. Next, we applied
sparse regression and cross-validation to find a subset of DD-ROIs
whose weighted average thickness or FA formed the best model of
category-guided and letter-guided fluency. The selected models for
both tasks include white matter and gray matter predictors, suggesting
an important role for the combined contribution of both white matter
imaging and gray matter imaging in the underlying networks. Specifi-
cally, we observed that category fluency was related to left temporal
cortex, including posterior-lateral middle and inferior temporal gyri,
along with white matter in left inferior longitudinal fasciculus and the
left frontal-occipital fasciculus. Letter fluency was related to similar
temporal cortex regions and white matter regions as category fluency
but additionally included superior frontal gyrus. In the sections below
we discuss our results and approach in greater detail.

Dimensionality reduction using eigenanatomy

We used eigenanatomy for data reduction and this approach provid-
ed us with DD-ROIs chosen to capture the variation in the data set. By
reducing dimensionality, we were able to minimize multiple compari-
sons problems inherent in voxelwise statistical tests and apply cross-
validation to select regression models. The eigenanatomy algorithm
computes unsigned DD-ROIs, which we use to compute regional
weighted averages of cortical thickness or FA. This approach retains
the interpretability of classical regions of interest, while allowing DD-
ROIs to be generated automatically for a specific data set and across
multiple modalities.

Multimodal data fusion using model selection

The fusion of gray matter and white matter in cognitive neurosci-
ence models is essential to understand large-scale neural networks
that account for behavior. In this study we demonstrated that models
which combine information from gray matter and white matter imag-
ing outperformed models using a single modality in accounting for ver-
bal fluency performance. This approach builds on previous work that
emphasized only gray matter components of the brain networks that
contribute to verbal fluency deficits in FTD (Libon et al., 2009a). Libon
et al. demonstrated that left temporal cortex contributed to both letter
fluency and category fluency but that additional frontal cortex was re-
lated to letter fluency, to support the additional executive demands as-
sociated with mental search strategy. Moreover, Libon et al.
demonstrated differences between category fluency and letter fluency,
where the former appears to depend more on lexical representations
while the latter appears to involve executive resources more heavily.
This kind of difference should distinguish patients with svPPA from
those with other FTD phenotypes, and indeed we found that patients
with svPPA were somewhat segregated from the other groups in the
brain network contributing to semantically-guided category naming
performance.



484 P.A. Cook et al. / Neurolmage 99 (2014) 477-486

At a broad level, converging evidence from both patient and func-
tional imaging work provides a coherent picture regarding the brain
networks involved in category fluency tasks. As noted previously,
depending on the category being accessed, these tasks can rely on a
combination of lexical, phonological, and semantic information, as
well as executive search processes involved in retrieving the relevant
information. Anatomically, there is good agreement that lexical infor-
mation relies heavily on posterior portions of left middle temporal
gyrus (Grossman et al., 2004). Visual semantic information is represent-
ed in part in fusiform gyrus and other ventral temporal structures
(Martin, 2007) with additional reliance on heteromodal regions
(Binder and Desai, 2011; Bonner et al., 2013). These regions devoted
to language content are complemented by regions of frontal cortex
more heavily involved in retrieval and search strategy. Some of these
frontal regions appear to play a more domain-general role in cognitive
processes (Duncan, 2010; Woolgar et al., 2011).

The regression algorithm and model selection procedures were
unaware of which predictors came from which modality but they
consistently returned predictors from both modalities in models of
both letter fluency and category fluency. These models outperformed
single-modality models in the cross-validation experiments, suggesting
that the use of two modalities is not redundant and both gray matter
and white matter features contribute to the prediction of verbal
performance.

Potential caveats and alternative approaches

Several issues must be kept in mind when considering our observa-
tions. The potential number of predictors is large, necessitating dimen-
sionality reduction and sparse modeling. Even with dimensionality
reduction through methods like eigenanatomy, we still have a relatively
large number of potential predictors, nearly equaling the number of
subjects. The model selection in this work was limited in scope: we
used a fixed eigenanatomy decomposition and sparse regression to gen-
erate candidate models with 1 to 10 predictors, and then used within-
sample cross-validation to choose between the candidate models. The
definition of the DD-ROIs themselves may also influence the results.
We decided to use 32 regions for both gray matter eigenanatomy and
white matter eigenanatomy, which yielded 64 DD-ROIs in total. The
optimal number of DD-ROIs is not obvious a priori, and may not be
the same for gray matter and white matter, however the choice to use
an equal number allowed us to compare gray matter and white matter
models with the same number of potential predictors and similar spatial
extent of each, which would be difficult to accomplish with currently
available anatomical label sets.

In this work we used eigenanatomy to perform unsupervised feature
selection, blind to the subsequent regression against cognition, in order
to minimize over-fitting. However, independent validation with unseen
data is required to test the generalizability of the selected regions
and the associated regression models. Related future work with in-
dependent training and testing data would be to optimize the
eigenanatomy decomposition itself for prediction of cognition, and
to compare our approach of eigenanatomy plus sparse regression
with alternative dimensionality reduction and model selection tech-
niques. Even without modifying the eigenanatomy procedure, we
could explore a larger space of candidate models, beyond the 10
models we tested for each fluency task. For example, McMillan
et al. (2014) trained and tested a classification model of AD vs FTD
pathology. They used a fixed eigenanatomy decomposition and test-
ed a large number of candidate regression models, which were then
validated on unseen data.

Model selection is also complicated by correlation between pre-
dictors across distinct regions that naturally form structural net-
works or that are affected in similar ways by pathology. While the
eigenanatomy DD-ROIs are spatially distinct, the resulting projections
(i.e., the weighted-average thickness or FA over the DD-ROI) can be
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Fig. 8. Matrix of the absolute value of the correlations between the first 10 thickness and
FA projections. There is a higher correlation between pairs of thickness projections (median
0.28) than between pairs of FA projections (median 0.25), or projections from mixed mo-
dalities (median 0.14).

correlated. The correlation matrix between the first 10 thickness and
FA projections is shown in Fig. 8.

In order to discourage over-fitting to the data, we selected models
containing relatively few brain regions. While these are efficient from
a regression perspective in that they minimize cross-validation error,
they will not form a complete description of the structural brain net-
works supporting verbal fluency. Our choice of sparsity constraints
will tend to exclude predictors based on DD-ROIs where the FA or corti-
cal thickness is highly correlated with predictors already in the model,
since correlated predictors may not improve the regression model
substantially even if the underlying anatomy is equally relevant to
the integrity of the structural network.

The DD-ROIs provided by an eigenanatomy decomposition are
optimized to explain variance in the data and not to fit a particular
regression model. This allowed us to use a common set of DD-ROIs
to explore models of different fluency tasks. Training a prediction
model on the brain data without a separate dimensionality reduction,
for example by using partial least squares (Krishnan et al., 2011) or a
penalized regression approach (Kandel et al., 2013), has potential to
build more predictive models, if carefully trained and tested to avoid
over-fitting.

In this work, the multimodal data fusion was done implicitly by
combining independently derived eigenanatomy projections from
both modalities into a single sparse regression model. It is not necessary
in principle to separate the gray matter and white matter data sets in
this way, an approach such as Sparse Canonical Correlation Analysis
could be used to define DD-ROIs containing both modalities (Avants
et al., 2010). Separating the DD-ROIs by modality allowed us to test
the relative performance of models containing gray matter, white matter,
and multimodal predictors.

Conclusions

We have shown that, using eigenanatomy, it is possible to reduce
gray matter and white matter neuroimaging data into DD-ROIs and to
fuse both modalities to best account for verbal fluency performance.
Using a small number of predictors, we are able to model category
and letter fluency with R? of around 0.5 in our data set. The sparse
regression models include white matter and gray matter predictors,
suggesting an important role for both white matter imaging and gray
matter imaging in understanding verbal fluency. Together, these tech-
niques provide a promising framework within which to explore
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multimodal fusion of neuroimaging data and the linking of these data
with cognitive performance.
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