Contents

1 Introduction ... 1

2 General ... 2
 2.1 Funding .. 2
 2.2 Core Collaborators at Washington University 2

3 Being in the lab .. 3
 3.1 Everyone .. 3
 Big picture ... 3
 Small picture ... 4
 3.2 The Boss ... 4
 3.3 Postdocs and Staff Scientists ... 5
 3.4 PhD students ... 5
 3.5 Employees ... 5
 Hours .. 6
 Employee resources ... 6
 3.6 Undergraduate students ... 6
 Honors students .. 6
 Independent study students ... 7
 All undergraduates ... 7
 3.7 University policies ... 8
 Employee guidelines ... 8
 Sexual harassment ... 8

4 Communication ... 9
 4.1 Communication within the lab 9
 My door ... 11
 Lab meeting ... 11
 Basecamp .. 11
 Wiki .. 12
 Email .. 12
 Calendars ... 13
 4.2 Communication outside the lab 13
 Phone .. 13
 Manuscripts .. 14
1 Introduction

My goal is to foster an environment of consistent scientific excellence and personal development that supports every lab member in reaching their full potential, and helps us have fun while doing great science. I want you to be happy and productive while you are here. This manual is a first point of reference for current lab members as we strive to achieve these goals, and serves as a general introduction for prospective members.

(Note that the lab manual is slowly being updated to reflect the Peelle Lab move to Northeastern University. Some information may no longer be applicable.)

The manual is available on GitHub\(^1\) under a Creative Commons license—feel free to use, modify, or be inspired by any portions that are useful to you. No permission is necessary but I always appreciate hearing if you’ve found it useful. There are also a couple of sites accessible only by lab members:

- Lab wiki: http://sites.google.com/site/peellelab/
- Basecamp: https://3.basecamp.com/3151709/

In general, firm policies are in the lab manual, whereas ways of implementing these policies (i.e., getting stuff done) are on the wiki so that they can be updated by anyone in the lab. Basecamp organizes tasks that need to be done (and relevant discussions) for specific projects, rather than general principles. Any information that is potentially private should go in a protected location. (You can read more about various lab resources in §4.1 on page 9.)

I assume the lab manual and wiki are accurate. This means that you should follow all of the policies and protocols contained in the manual and wiki. If you notice something that seems to be wrong, please let me know (for the lab manual) or change it yourself (for the wiki). If there is something in the lab manual or wiki that you notice people aren’t doing, please bring this up at lab meeting, or to me, privately—don’t assume this is okay (it’s not).

\(^1\)https://github.com/jpeelle/peellelab_manual
2 General

2.1 Funding

External funding supplies the vast majority of resources needed to conduct our research, including salary for personnel, equipment, subject payment, and so on. It is important that we run the lab in a way that shows we use our research funding wisely.

Our current funding includes:

- R01 DC019507 from NIDCD, “Individual differences in brain networks supporting speech understanding in patients with cochlear implants”.
- R01 DC017451 from NIDCD, “Measurement of individualized factors associated with tinnitus burden” (PI: Piccirillo).

Funding from NIH (through our own grants or those to collaborators) means that work in the lab is supported by the taxpaying public.

2.2 Core Collaborators at Washington University

- **Joe Culver** (Radiology) directs the optical radiology lab and is a co-investigator on several projects using optical imaging (HD-DOT) to measure neural responses to speech.
- **Jill Firszt** (Otolaryngology) directs the adult cochlear implant program. We are working with Jill on projects related to cognitive processing and listening effort in listeners with cochlear implants.
- **Kate McClannahan** (Otolaryngology) is an audiologist interested in subjective communication difficulty and the relationship between anxiety and communication.
- **Mitch Sommers** (Psychology): We have several projects with Mitch’s lab looking at lexical competition, eyetracking, and listening effort.
- **Kristin Van Engen** (Linguistics/Psychology) collaborates on a number of studies looking at listening effort, accented speech, and memory for degraded speech.
3 Being in the lab

3.1 Everyone

Big picture

We expect each other to:

- Push the envelope of scientific discovery and personal excellence.
- Do work we are proud of individually and as a group.
- Double-check our work, and be at least a little obsessive.
- Be supportive—we’re all in this together.
- Be independent when possible, ask for help when necessary.
- Communicate honestly, even when it’s difficult.
- Share your knowledge. Mentorship takes many forms, but frequently involves looking out for those more junior.
- Work towards proficiency in R, Unix, and (as applicable) Matlab or Python (bonus points for LaTeX).
- Be patient. Including with your PI. He will forget things you just talked about, and repeat some stories over and over. Them’s the breaks.
- Advocate for our own needs, including personal and career goals.
- Respect each other’s strengths, weaknesses, differences, and beliefs.
- Keep everything awesome.

And, for all research projects, to follow the principles discussed in Chapter 5, unless we’ve explicitly discussed an exception.
Small picture

The Center is a shared space, so please be thoughtful of others, including (but not limited to):

- With few exceptions, do not come to work if you are sick. It’s better to keep everyone healthy. Health is especially important because we are in a clinical building with hospital patients here for care, and we have a responsibility to keep them healthy, too. If you are sick, email the lab manager or me to let me know you won’t be coming in, and update your lab calendar to reflect the change.

- Keep your area, and the center, neat. Items left unattended may be cleaned, reclaimed, or recycled.

3.2 The Boss

You can expect me to:

- Have a vision of where the lab is going.
- Care about your happiness.
- Support you in your career development, including writing letters of recommendation, introductions to other scientists, conference travel, and promoting your work as often as possible.
- Support you in your personal growth by giving you flexibility in working hours and environment, and encouraging you to do things other than science.
- Buy you coffee.
- Make the time to meet with you regularly, read through your manuscripts, and talk about science.
- Obsess over font choice, punctuation, and graphic design.
3.3 Postdocs and Staff Scientists

I expect postdocs to move towards being more PI-like, including giving talks, writing grants, and cultivating an independent research program (while still supporting the lab’s research). And, to have (or acquire) the technical and open science skills listed for PhD students, below.

3.4 PhD students

I expect PhD students to:

- Know the literature related to their topic like the back of their hand.
- Seek out and apply for fellowships and awards (including travel awards, etc.).
- Realize that for most of us, there are times for pulling all nighters, and times for leaving early to go to the park and enjoy the sunshine.

By the time you’re done, you will have to know how to do statistics and plots in R, share your work with me using Rmarkdown, use Matlab scripts for data analyses, know enough Python to navigate presentation in PsychoPy, and make figures and posters using Adobe Illustrator or a similar graphics program. You will also preregister your experiments when appropriate (which it almost certainly will be) and share your data and analysis scripts publicly. The learning curve can be a little steep on these but it’s well worth it. (If these aren’t compatible with your goals or interests, my lab is probably not a good fit for you!)

3.5 Employees

I expect paid employees, whether full-time or part-time, to use their time efficiently to support the projects to which they are assigned. Paid employees will typically have the most interaction with other staff, and with research participants, and in these contexts especially should be a model of professionalism.
CHAPTER 3. BEING IN THE LAB

Hours

Work hours in the lab are typically 8:30–5:00 (or 9:00–5:30), with 30 minutes for lunch. If you are testing participants outside of this time, we will adjust accordingly for those weeks. You are responsible for keeping your hours at the agreed amount (usually 8 hours per day, 40 hours per week for full-time employees).

Time off should be requested at least 2 weeks in advance, via email. Once approved (via email) please add to the lab calendar.

(Note that graduate students, postdocs, and staff scientists are given more flexibility in their hours, provided they make sufficient progress on their projects. This flexibility does not extend to other paid positions because we need to maintain a consistent lab presence for scheduling, supporting undergrads, interacting with other staff, and so on.)

Even if you speak with me in person, it is important to document these requests (and my approval) over email so that we have a record. It is your responsibility to make sure this happens.

Employee resources

There are many resources and benefits available through human resources. These are spelled out to some degree on the website, and I can also put you in touch with people in the department or HR who can offer guidance.

3.6 Undergraduate students

Honors students

Students who have already demonstrated themselves to be careful and independent workers for a minimum of 3 months may apply to do an honors project in the lab. The overall project should be discussed in the Spring for completion the following year. Due dates and requirements differ across programs; check with your individual program for application requirements. I expect that we will start working on this over the summer before the project year, whether that involves you working in the lab over the summer, or working from home.

Because honors projects necessarily rely on lab resources, they need to fit within the overall scope of lab research. I have a list of possible honors projects to
Table 3.1: Deadlines for one-year research projects

<table>
<thead>
<tr>
<th>Event</th>
<th>Senior honors</th>
<th>Capstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic picked</td>
<td>Spring of prior year</td>
<td></td>
</tr>
<tr>
<td>Stimulus materials finalized</td>
<td>September 1</td>
<td></td>
</tr>
<tr>
<td>IRB approval finalized</td>
<td>September 15</td>
<td></td>
</tr>
<tr>
<td>Data collection begun</td>
<td>October 1</td>
<td></td>
</tr>
<tr>
<td>15 minute lab talk on background</td>
<td>Fall semester</td>
<td></td>
</tr>
<tr>
<td>Draft of introduction and methods</td>
<td>December 20</td>
<td></td>
</tr>
<tr>
<td>Complete written draft</td>
<td>March 1</td>
<td>April 1</td>
</tr>
<tr>
<td>Practice talk</td>
<td>April 1</td>
<td>April 15</td>
</tr>
<tr>
<td>Final written draft</td>
<td>End of April</td>
<td>End of April</td>
</tr>
<tr>
<td>Oral presentation</td>
<td>After Spring break</td>
<td>Early May</td>
</tr>
</tbody>
</table>

choose from which fit within our ongoing research which we can use as a starting point for our discussions.

The paperwork requirements differ by program. It is your responsibility to check what the requirements are in your program and department, and make sure to get your project submitted by the deadline (which might be the semester before your senior year).

At the outset of your honors project, please make a to-do list on Basecamp with planned due dates (see Table 3.1), and keep this updated throughout the year. (There is an honors project template to get you started!)

Independent study students

Undergraduate students in the lab during the year should enroll in an independent study section to receive credit for time in the lab.

Independent study students should plan on producing an annotated bibliography of 5–10 articles on their selected topic, and making a 15-minute presentation at lab meeting sometime during the semester. (Depending on what department you are enrolled through, you may have additional requirements.)

All undergraduates

I expect undergraduates to be utterly reliable and willing to help with whatever projects need it. At a bare minimum, reliability includes showing up on time,
maintaining your hours on the lab calendar, and making sure that all of your work is accurate (double-check everything). If you find yourself without a specific project:

- Ask around to see if you can help with anything.
- Look on the wiki under “Essential lab skills” and spend some time learning something new.
- Look on Basecamp for either a wiki page that needs creating/updating, or other miscellaneous lab tasks that need to be done.

There is enough to do that you should not be bored!

Your first semester in the lab is an opportunity to see whether continuing in the lab is a good fit; after your first semester we will meet and discuss whether you will continue.

3.7 University policies

Employee guidelines

Important guidance on benefits and policies (including time off policies) is available through Human Resources. It is important that these policies are followed at all times. You are responsible for reviewing the policies and benefits; human resources is a good resource and they can help you if you have any questions. If you have any questions please speak with me.

Sexual harassment

University policy requires that if any faculty member (such as me) becomes aware of sexual harassment or abuse involving students or employees we must report it to the Title IX Sexual Harassment Response Coordinator.¹ Counselors and other medical professionals on campus who discuss these issues in their professional capacity can keep patient confidentiality.

¹https://www.northeastern.edu/ouec/
4 Communication

4.1 Communication within the lab

I am usually busier than I’d like to be, and as a result have less time for talking to folks than I’d like. However, you (lab members) are one of the most important parts of my job, and I need your help to stay organized and involved in the things I need to be involved in. Some general rules of thumb are:

1. Be proactive—tell me what you need. This includes coming to knock on my door even if it seems like you are interrupting, emailing me to set up a time to meet, or catching me before or after lab meeting. In all likelihood I will not check in with you as often as I’d like, so it is up to you to make sure nothing falls through the cracks.

2. Use calendar invitations. Unless a meeting is on my calendar it doesn’t count and probably won’t happen. If we set a meeting, send me a calendar invitation (including a Zoom link, if we are meeting by zoom). Bonus points for using a descriptive title: “planning language fMRI study” is so much more helpful than “meeting”.

3. Write things down and remind me what we’ve talked about. I would love to remember everything we decided when we met last week, but this doesn’t always happen. Don’t hesitate to bring me up to speed when we meet. Even if I already remember what we are talking about, a couple of introductory topic sentences will help get me in the right frame of mind. Be sure to write down everything in your lab notebook and Basecamp!

4. Read all of the lab documentation: this lab manual, the lab wiki, and Basecamp. You are responsible for knowing what is in each of these places, following the rules and guidelines we have set up, and notifying someone if you find incorrect information (or if you have questions).

5. I can be the most helpful to everyone if you are a little bit strategic in what you ask me. Please check the lab wiki, other people in the lab, and a Google search before shooting me off a question (see Figure 4.1).
Figure 4.1: Lab decision tree. Answers to all your questions should be in the wiki!
CHAPTER 4. COMMUNICATION

My door
Metaphorically my door is always open, but sometimes my door is, physically, closed. If this is the case:

- If we have a meeting scheduled please knock! Hopefully I am around.
- If we don’t have a meeting scheduled, a closed door generally means I am trying to do some writing and should not be interrupted. Of course, if it’s an emergency, please knock anyway. Otherwise, please send me a Basecamp message or try another time.

Lab meeting
We meet weekly to talk about science together, and to make sure we have a chance to touch base on administrative and practical issues. There may even be a snack. Regular attendance and participation is expected (unless you have a class or clinical responsibilities during that time).

Basecamp
Basecamp is the main tool for lab communication and is preferred to email in almost every situation. Please help me by keeping Basecamp up to date! A few thoughts and tips:

- If we have a meeting to talk about your project, take notes on your laptop right in Basecamp. Make a new discussion with notes from the day—you can copy these over elsewhere later. (Alternatively, take notes on paper, but then put it in Basecamp right away so you remember.)

- Use the to-do lists, both for yourself and others (including me). It helps me see what is coming up, and what things you are thinking about. Take the time to assign a person responsible when possible (including yourself, or me). And please assign due dates! (Otherwise I can lose track of items.)

- When you post a message, you can optionally have it emailed to people on the project. One of the nice things about Basecamp is that it can reduce the amount of email we have to read. If you need a response, or it’s critical I know what you’ve added, then by all means have Basecamp email me. But
if you are just taking notes or updating an ongoing discussion, uncheck the box and it will help me out.

- For anything we might need to refer to later, use a message rather than a ping. Pings are fairly ephemeral and hard to find later. For example, if you’re asking me to read a draft of an abstract or manuscript, make a to-do for me and attach the document for me to read right to the to-do (rather than pinging me).

- This is idiosyncratic and silly but I have found I am more likely to give feedback if I can click a link and start working instead of downloading and opening. Don’t ask me why. When possible and practical, sending me a link to a Google Doc or similar may get you faster feedback (I realize this doesn’t work for everything!).

- I prioritize Basecamp over email. Most things you would email me are related to a project, and can thus be a message (or to-do) in Basecamp. The advantage (in addition to me replying to it sooner) is that it helps loop other people in and keep our discussions organized.

Wiki

The lab wiki is our shared collection of knowledge about how to get things done in the lab. The lab manual you are reading now is “top down”, in that I am writing the whole thing myself. By contrast the wiki is a shared resource to which everyone can—and should—contribute. A good rule of thumb is that if you need to figure out how to do something, someone else in the lab may someday need to do the same thing. (This person might even be your future self.) Whenever possible please document what you figure out on the wiki, including updating old sections which may no longer be relevant. Please encourage each other (and those working with you) to do the same!

Email

When contacting me, please use Basecamp whenever possible. I will try to reply to emails when I can but please don’t use it for anything urgent if you can avoid it. If you need to reach me urgently you can call my cell phone or a research assistant. I also try to use Basecamp as much as possible, but sometimes will need to email you. Please stay on top of your email.
I will sometimes email you, or Basecamp you, outside normal work hours, because it’s the time I have available. It does not imply I expect you to respond outside of your normal work hours (with rare exceptions for impending deadlines, urgent matters, etc.). The great thing about email and Basecamp is that they work really well asynchronously—we can all work on things, and respond to requests, at times that fit in with our schedules.

Calendars

Accurate calendars are extremely important in managing lab space and resources. It is crucial that everyone use the calendars regularly and ensure they are accurate. Use the lab calendars and follow the instructions described on the wiki.

4.2 Communication outside the lab

Communicating to people outside the lab is extremely important: your actions reflect not only on yourself, but on the lab, the lab director, the department, and the university. This is true both for participants (who volunteer for our studies) and scientific colleagues (whose opinions have a direct impact on our success and opportunity—they are the ones reviewing our grants and papers!). It is important that every time one of us represents the lab it is to a high level of professionalism.

Phone

- If the phone rings, answer it: identify the lab and your name. Most calls will be from potential (or current) research participants, so it’s important they view us as professional and competent. “Peelle Lab. This is [your name here]. How may I help you?” is a great start. Remember that many people calling will be older and/or have hearing loss, so speak slowly and clearly.

- Check voicemail messages daily to make sure nothing important slips through.

- If someone calls the lab and leaves a message, call them back within one business day to confirm that we received the call. If they would like to participate in a study but we can’t schedule them, thank them for their interest and ask if we can contact them in the future should one come up (if you actually will). If you are not going to contact them (or they do not qualify), tell
them that we are done recruiting for that study and do not have anything else available, but thank them for their interest. Refer to §5.2 (page 21) and the lab wiki for detailed instructions on scheduling participants and general phone etiquette.

Manuscripts

General

- Always show a manuscript (or revision) to all authors before submitting it, giving them the opportunity to comment.

- Go over page proofs carefully, including the references. There is almost always a mistake (ours, or introduced by the publisher).

- Always give the senior author the opportunity to look at page proofs.

Formatting

When you are out in the big world on your own, you are free to format your manuscripts however you like. While you’re in the Peelle Lab, when sending me a draft of a manuscript, please do the following:

- Include page numbers.

- Include the full author list starting from the first draft, which helps clarify any authorship issues or concerns early on.

- Include placeholders for all sections (i.e., introduction, methods, results, discussion, etc.) even if they are empty, so that we can fill them in as we go. Having placeholders also helps clarify the organization from the beginning.

- Use styles, especially for headings. This will help organization of the manuscript and make it easy to change font and formatting if need be. (To make a heading, don’t simply select the text and make it bold; select the text and then a heading style, such as “Heading 1”.)

- While we are sending drafts back and forth, keep the text single-spaced. If the journal requires double spacing, we can add this at the end.
• Embed figures and tables in the body of the manuscript rather than putting at the end, or in separate files. Again, we can change this to match journal guidelines before submitting if need be. It’s much easier to read and comment on a manuscript if I don’t have to switch back and forth to different files for tables and figures.

Some of these are good practice; others are simply my own preferences. However, if you humor me in these, it will decrease my distraction when reading your writing, and ultimately enable me to be more useful to you. I’m happy to send you a blank draft manuscript to get you started. (These days, most of the lab writing is on Google Docs, and I can get you started there.)

Your papers should be free of spelling and grammatical errors. There is no shame in asking for help with this; your fellow labmates are available to help. The best proofreaders will explain to you why things need to be changed so that you learn how to be a better writer, rather than simply correcting your writing. By taking time to clarify your writing early on, you will become a better writer, and also free me up to help you focus on the scientific content. If you send me a paper with grammatical errors or sloppy writing I may return it to you, which is annoying for both of us.

When naming files, please include your name and a version number. If you send me a file called “Research_Statement.docx”, it is likely to get lost—try “Baldrick_research_statement_v01.docx” (assuming your name is Baldrick and this is the first version you are sending me). Renaming files with initials when making comments is generally helpful; I would send this file back to you named “…_jp.docx”. After you incorporate any changes, you can then create a new document named “Baldrick_research_statement_v02”. See also http://www2.stat.duke.edu/~rcs46/lectures_2015/01-markdown-git/slides/naming-slides/naming-slides.pdf.

Figures

If we are still trying to work out what a good figure looks like, I’m happy to talk this through with you and look at rough drafts. However, if we have a good idea of what we want in the figure, please send me something as finished and polished as you can make it—this makes it easy for me to give the most helpful feedback.
If you give me something that isn’t your best work, I will probably just tell you things you already know.

Most figures should be vector art (saved as PDF or EPS files). Vector-based files don’t suffer the artifacts and poor quality that raster-based images show when magnified. Use a graphing program (such as R, Matlab, or JASP) to export to an EPS file, and then modify that file in Adobe Illustrator or other image-editing program.

| Don’t use Microsoft Excel for your figures! It’s never the best option. If you must organize your data in Excel, that’s fine, but then do plotting in a better plotting program (e.g., R, Matlab, or Python). (JASP also makes decent graphs.) |

4.3 Abstracts

Anyone submitting an abstract for a conference, symposium, etc. should clear this with me first, and aim to circulate to all authors at least one week before the submission deadline.

Talks

Anyone giving a talk to a non-lab audience is required to give a practice talk to the lab at least one week before the real talk. If this is your first public talk on a lab project, plan on at least two practice talks (starting at least 2 weeks before the real talk). Practice talks should be mostly finished (final slides, practiced, and the right length) so that our comments will be as helpful as possible. Schedule one or more meetings with me ahead of time to plan or go over your slides, especially if you haven’t given many talks before.

Posters

Anyone presenting a poster should circulate an initial version to all authors at least one week before the printing deadline. Use the lab Adobe Illustrator template so that our posters have a consistent look to them. If this is your first time using Illustrator, make sure to leave plenty of extra time so you can learn how to use the software (there’s a learning curve!).
Make sure to double check the poster size and orientation for the conference, and the size of the paper or canvas it will be printed on.

For many conferences you will want to bring a sign-up sheet where people can request an emailed PDF.
5 Science

5.1 Big picture science

Scientific integrity

You have a responsibility to me, the institutions that support our work, and the broader scientific community to uphold the highest standards of scientific accuracy and integrity. By being in the lab you agree to adhere to professional ethical standards. There is never an excuse for fabricating or misrepresenting data. If you have any questions, or in the unlikely event that you have concerns about a research practice you have seen in the lab, please talk to me immediately.

It is also important that you prioritize the accuracy of your work while in the lab. Unintentional errors due to inattentiveness or rushing can be extremely damaging and produce results that turn out to be incorrect. Although there is always a pressure for a high quantity of research, it is critical that everything we do is of the highest quality. Please double-check your work frequently. In many cases multiple people will double-check a data set to ensure no mistakes have crept in along the way.

Open, accurate, and reproducible science

For lab manuscripts, we go through a paper checklist\(^1\) that includes sections on open science and statistics to encourage us to continually keep these issues in mind.

Open science

We are working towards putting all stimuli, data, and analyses online and linked to each research publication. The idea is not to simply tick a box of “open science”, but to make these resources readable and useable for reviewers and other researchers. In service of this:

- Projects need to be documented and described. At a minimum, each project should have a README file\(^2\) at the top level that provides details about the item in question (such as a set of stimuli or an analysis).

\(^1\)https://github.com/jpeelle/paperchecklist

\(^2\)http://jonathanpeelle.net/making-a-readme-file
CHAPTER 5. SCIENCE

• Code should be tested, bug-free, and helpfully commented.
• Links should be permanent (ideally a DOI).

In pursuit of this high level of organization and documentation, lab members will frequently be asked to review and error-check lab materials (including sound files, text lists of stimuli, etc.). Lab members creating stimuli or conducting research projects should organize them from the outset in a way that is conducive to eventual sharing (GitHub, ipython notebooks, etc.).

Accurate science

A key part of accuracy is anticipating and avoiding problem events (including near misses), and creating structures in the lab that facilitate a high level of reliability.

Inspired by a blog post on reliability in the lab\(^3\) we have allocated time at lab meeting to make sure none slip through the cracks. Examples of problem events include:

• Any of the lab computers malfunctioning (including freezing or crashing)
• Not being able to find the installation disc for a software program
• A participant tripping entering a testing room
• Nearly running out of money to pay participants (this counts as a “near miss” which we also need to discuss)

As a lab member it is your responsibility to be aware of times when things don’t go as planned and bring these to the attention of the rest of the group. Even better, let’s all work together to find ways of preventing such occurrences in the future!

5.2 Practical science

Setting up a research study

Anyone starting a new research project should follow this approach, which I’ve adapted from other labs. The goal is to have a consistent way of doing things in

\(^3\)http://jeffrouder.blogspot.com/2015/03/is-your-lab-highly-reliable.html
the lab that encourages open science, collaboration, and others (including me) being able to understand your project after you have left the lab.

- **The main study folder.** Create (or ask me a research assistant to create) a folder on our lab shared drive in the appropriate IRB section. Your study folder should be named descriptively and have two subfolders: a private folder that contains non-shareable information (for example, identifying participant information) and a shared folder that contains all of the items we want to share when we publish the study. Subfolders in shared typically include materials, data, and analysis. The shared folder should contain a descriptive README.md file that gives the study background and hypotheses, a description of all of the files in the repository, and links to any relevant files not in the repository. Basically, with the README.md file, another researcher should be able to understand and repeat the study.

- **The online repository.** Have me start a project on Open Science Framework (OSF) with you as a contributor for your project, which I will link to the shared folder.

- **Data.** The shared folder should contain the programs used to collect the data (e.g., EPrime, PsychoPy, etc.), any raw non-MRI data, processed data used for statistics, etc.

- **Stimuli.** Stimuli should be in the materials subfolder in shared. If they might be used by another study—which is often the case—they should have their own repository, and be linked from the lab website and the study README file.

- **Statistics.** Scripts for analysis—for example, from R, Matlab, or JASP—should be in the analysis folder of the shared folder. Scripts should be written to use the open data as much as possible; for example, by getting data directly from OSF rather than from the local disk, or by including code to handle MRI data downloaded from a shared repository. Wherever possible scripts should also generate figures as close to those in the paper as practical.

- **Final figures.** EPS, PDF, and/or PNG images of final figures should be in the repository with an explicit CC-BY creative commons license so that

\[\text{http://osf.io}\]
the figures can be re-used without charge by us and others (e.g., in review articles).

Our lab checklist for scientific publications

Anyone writing a manuscript (including an honors or capstone project) should consult the Peelle Lab Paper Checklist \(^5\) and discuss with me before submitting your manuscript (ideally, early on in your project!).

Participants

Our research is made possible by the goodwill and generosity of our research participants. We not only need people to participate in our studies, but to try hard to do their best, and potentially return for a future study. Caring for our participants is one of the most important parts of the lab and something in which every member plays a role.

The most important thing is that participants must always be confident that we are professional and treating them with respect. All of the specific advice supports these goals. In general, it is helpful to model our interactions off of other professional situations, such as a doctor’s office.

For all participants:

- **Dress professionally**: No jeans, t-shirts, sweatshirts, sneakers, or sandals. When in doubt, ask! This is true for both young and older adults—dressing professionally will help undergraduate participants to take the experiment seriously.

- **Answer the phone, and return all phone calls (and emails) promptly.** Tell participants who you are, and where you are calling from: “Hello, this is [name] calling from the Speech, Hearing, and Communication Lab at Northeastern University. I am returning your call from yesterday regarding a research study.” (They will not know what the “SHAC” lab is!)

- **Be prepared to answer questions.** If you don’t know the answer, it is completely fine to ask the participant if someone else can call them back. You are then responsible for making sure this happens quickly.

Table 5.1: Terms associated with research studies

<table>
<thead>
<tr>
<th>Instead of saying:</th>
<th>Say this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>experiment study</td>
<td>study, research study</td>
</tr>
<tr>
<td>subject</td>
<td>volunteer, participant</td>
</tr>
<tr>
<td>test (e.g., “hearing test”)</td>
<td>task or screening (“hearing screening”)</td>
</tr>
</tbody>
</table>

- Arrive at least 30 minutes prior to testing time to make sure equipment and paperwork are all set, and to be around in the event the participant shows up early. Everything should be set up before the participant arrives. For people coming from off campus, you should be at the designated meeting spot 15 minutes before the agreed upon time.

For non-students, and especially older adults:

- Always use a title (Dr./Ms./Mr.) and a participant’s last name when addressing them. If you aren’t sure how to pronounce their name, ask them. (You can also ask them which title they prefer.)

We can also help participants feel more at ease by being thoughtful about the language we use. For example, “participating” in a “research study” is more friendly than being a “subject” in an “experiment”.

Some participants are involved in multiple studies, and they may lose track of which person is associated with which study. Make sure to remind participants the lab you are affiliated with, and clarify the location for testing when the time comes.

Refer to the lab wiki for specific information on recruiting, scheduling, and testing participants.

Lab notebook

Anyone conducting an independent research project should have a lab notebook for keeping track of discussions, experiments, and taking notes. You may also want to use an electronic notebook (e.g., Evernote) as your primary lab notebook, or to supplement a paper copy. The important thing is that you are keeping notes, and they are in one place.
5.3 Computers and data

General guidelines

- Testing laptops should never leave the lab except for testing. Always sign out the computer and any other equipment (such as the EPrime dongle) on the lab resources calendar.
- Do not install extraneous software or store personal files on the computers.

Backing up your files and data

Always assume that as soon as you turn your back the computer on which you have been working will explode. Thinking such dire thoughts will make it easier to follow these guidelines:

- If you save files to the shared lab drive, backup will automatically happen. When working on a lab computer save all of your files to the shared drive. If you are working on lab projects on your own computer, transfer these files to the shared lab drive regularly to make sure they are in one place, and backed up.
- Full-time employees should back up their computers on an external hard drive, preferably through an automated backup program that runs at least daily.
- Data from participants is irreplaceable and should be removed from testing computers immediately following testing and onto the lab server in the “data” folder for the appropriate study (found in the “projects” folder). (MRI data is an exception as it is already backed up.)

Make sure your work is always backed up.
6 Other

6.1 Recommendation letters

It is part of my job (and, thankfully, quite often a pleasure) to write letters of recommendation for people in the lab. Please give me as much notice as possible, and make sure I know the deadline, format (electronic? printed?), official name of the organization, what you are applying for, and so on. Please also send along a current CV.

If you are an undergraduate, I will write your letters on my own. For more senior lab members, I will also write your letters on my own, but please send me a draft of the letter (which I will extensively modify). The first few times you do this it will probably feel awkward. However, keep in mind that your goal is to make it as easy as possible for a letter writer (in this case, me) to complete the task by the deadline and without error. Even though I will re-word a lot of the letter, it will still have the name of what you are applying for and details regarding how long I have known you, the projects you have worked on, and so on. This is extremely helpful in jogging my memory and will give me more time to focus on saying good things about you. Don’t worry about being too “braggy”; I have no problem toning things down if need be.

Like everything else, communication is key, and when in doubt, ask!
7 Frequently asked questions

Where are all the FAQs?
No one has asked any questions yet.

If you are looking at a printed version, please write questions here:
8 Glossary

HRPO ("harpo") (Human Research Protection Office)
The office in charge of human subjects research and the IRB.

IRB (Institutional Review Board)
The IRB oversees human subjects research and makes sure that research is conducted in a way that protects subjects’ safety and privacy. Our lab submits protocols to the IRB which describe the research we want to do; the approved protocol is linked to a particular consent form that subjects sign when they participate, informing them about the study.

PI (principal investigator)
In the context of a grant, the PI is the person responsible for making sure the proposed research gets done. More broadly it refers to a researcher who has their own research group or lab (i.e., someone who would be in a position to be a PI on a grant, regardless of whether or not they are currently funded).

project
In our lab, a “project” refers to a specific IRB protocol, whereas a “study” is a particular experiment done under this umbrella approval.

study
In our lab, a “study” refers to an experiment (such as “False Hearing II”) that falls under an umbrella IRB project.

If you are looking at a printed version, please make a list of terms you’d like defined (feel free to include a suggested definition):
Reading test

Lab members: If you are looking at a printed version, please write your name below to indicate you have read the current version of the manual and agree to follow these policies.

Date Printed name Signature